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ABSTRACT: Understanding the photovoltaic (PV) power generation's temporal and spatial patterns is vital for grid 

balancing. This study aims to validate a simulation model for historical decentralized PV power generation, extending 

it to encompass the unique orientation of all PV systems within the Swedish municipality Knivsta. In a previous 

research project, a Convolutional Neural Network exhibited a 95% accuracy of identifying PV systems within Knivsta. 

In this project, using Light Detection and Ranging data, the orientation and area of detected PV systems was estimated. 

By combining this information with local weather and irradiance data, historical PV power generation was simulated. 

The regression analysis demonstrates strong correspondence between simulated and measured hourly generation for 

six reference systems, with coefficients of determination between 0.69–0.83. This study derives generic module 

parameters based on installation year and an average DC-to-AC ratio, enabling municipal-level simulations. 

Simulations for 2022, considering one scenario with optimal orientation for all PV systems and one scenario with 

derived real-condition orientations, reveal a smoothing effect in the daily pattern of aggregated PV generation, if 

considering real orientations. At the peak hour, power generation was found to be 10% lower when considering 

individual orientations compared to assuming optimal orientation across all facilities.  
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1 INTRODUCTION 

Solar photovoltaic (PV) installations have experienced 

rapid growth over the past decade [1]. Projections from the 

International Energy Agency indicate that this upward 

trajectory will continue, with annual installations 

consistently setting new records [2]. Consequently, this 

trend is expected to drive further expansion in small-scale 

and decentralized electricity generation. For instance, in 

Sweden, distributed PV capacity reached 1 453 MW by the 

end of 2021, constituting a remarkable 92% of the total 

installed PV capacity [3].  

The decentralized nature of distributed PV presents 

challenges in accurately measuring and predicting power 

generation. A significant portion of PV-generated power 

is self-consumed, leaving only grid-fed electricity subject 

to measurement by distribution system operators (DSOs) 

[4]. Consequently, the total aggregated PV electricity 

generation remains unknown in Sweden, as well as in most 

other countries globally. This lack of insight into the 

timing and quantity of PV-generated power poses 

significant challenges for DSOs in terms of grid balancing 

and capacity planning [5]. Consequently, there is a need 

for methods to forecast and estimate expected electricity 

generation from distributed PV systems [6]. 

A grid-based simulation model for the Nordic 

countries designed by [7], was tailored in a Swedish 

research project [8], to calculate the average hourly power 

output per installed DC capacity for PV systems. This 

model necessitates technical specifications of system 

components, including installed direct current (DC) and 

alternating current (AC) capacities, as well as the 

orientation (tilt and azimuth) of the PV modules. The 

model requires technical information of the system 

components, the installed DC and AC capacities, and the 

orientation of the PV modules. It also applies local hourly 

weather and irradiance data, with a spatial resolution of 

2.5×2.5 km, which requires the geographical location of 

the PV system [9,10]. 

Recent research have yielded effective methods for 

remotely determining the precise geographical positions of 

PV and solar thermal panels, employing aerial imagery 

and machine learning techniques [11–17]. In one study, 

succeeding this work, a convolutional neural network 

(CNN) trained on orthophotos demonstrated a remarkable 

accuracy, achieving a 95% success rate in detecting PV 

systems within a Swedish municipality [16]. 

A significant challenge in modelling distributed PV 

power generation lies in the often unknown orientation of 

solar panels [6, 12]. Nonetheless, studies have showed the 

potential of using light detection and ranging (LiDAR) 

data to estimate the orientation of PV systems [18–20]. In 

a Swedish study [20], PV system orientations were 

assessed by computing the orientations of roof facets, 

using LiDAR data provided by the Swedish Land Survey. 

According to [19], LiDAR-derived orientations were 

found to be more accurate than reported data from the 

system owners, which often contain substantial 

uncertainties. 

The combination of aerial imagery, LiDAR data and 

machine learning techniques enables remote geographical 

positioning and orientation estimations of distributed PV 

systems. When coupled with the previously mentioned 

simulation model [8] for computing the average hourly 

power output, this approach makes it possible to simulate 

the electricity generation from PV systems with known 

technical characteristics. To our knowledge, estimating the 

aggregated PV generation of distributed systems in a large 

geographic area using this approach, has so far not been 

done. Further, this methodology lacks validity. Therefore, 

in this study we implemented this method to simulate the 

hourly power generation of six reference PV systems and 

validated the result, by comparing the simulated PV power 

generation to the measured generation. 

The underlaying motivation of the study is that 

predicting aggregated power generation, where the 

individual orientations are considered, can offer benefits 

for DSOs. As they lack the information of the orientation 

of PV systems, the Swedish DSOs traditionally operate on 

the assumption that all PV systems simultaneously can 

deliver their nameplate AC capacities, to ensure the 

adequacy of grid dimensions. This scenario is unlikely to 
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occur since PV systems are typically installed with the 

same orientation as the roof facet [16,18], resulting in a 

wide spread of orientations, which therefore are not 

optimally oriented [21]. Based on the methodology-

approach described earlier, the orientations across the 

Swedish Municipality of Knivsta were assessed and are 

illustrated in Figure 1. The broad spectrum of orientations 

within the municipality serves as compelling evidence that 

PV systems are improbable to generate their installed AC 

capacity in a synchronized manner. In addition to the 

primary goal of validating the PV power simulation model, 

this study also aspires to offer an initial quantitative 

assessment of the magnitude of the smoothing effect 

resulting from the wide spread of orientations of PV 

systems in the Swedish Municipality of Knivsta. 

 

 

2 METHOD 

 This section presents the model for simulating PV 

power generation, the validation of the model, the data 

used in this study and assumptions made when simulating 

on a municipal scale. 

 

2.1 Simulating PV power generation 

2.1.1 PV power model 

 The average hourly electricity generation from a PV 

system per kW installed DC capacity PDC/kWDC 

(W/kWDC) is calculated with a modified version of Eq. (1) 

from Campana et. Al [7] by; 

 

where η is the efficiency of the PV module at standard test 

conditions (STC) (%), μ is the temperature coefficient of 

the maximum power efficiency (%/°C), 𝑇𝑎 is the ambient 

temperature (°C), 𝑇𝑆𝑇𝐶 is the temperature during STC 

(25°C), 𝑣 is the wind speed (m/s), NOCT is the nominal 

operating cell temperature (°C) and Gg,t, is the global tilted 

irradiance (W/m2).  

 The inverter was simulated with the Steca Grid 300 

efficiency curve [7]. To handle potential curtailment from 

the inverter, the model uses a minimizing function to 

generate the hourly AC power output per installed kW DC 

capacity, PAC/kWDC, at every hour expressed by; 

𝑃𝐴𝐶/𝑘𝑊𝐷𝐶
= 𝑚𝑖𝑛 (𝑃𝐷𝐶/𝑘𝑊𝐷𝐶

,
1000

𝑃𝑚𝑎𝑥,𝐷𝐶/𝑃𝑚𝑎𝑥,𝐴𝐶  
), 

(2) 

where Pmax,DC is the installed DC capacity and Pmax,AC is 

the installed AC capacity. 

 To generate the final total hourly power output from a 

PV system, in kilowatt instead of watt, PAC (kW), the 

power generation per installed kWDC needs to be 

multiplied with the nameplate capacity of the system, 

using the following equation:  

 

𝑃𝐴𝐶 =  
𝑃𝐴𝐶/𝑘𝑊𝐷𝐶

 ×  𝑃𝑚𝑎𝑥,𝐷𝐶

1000
. 

(3) 

 Calculating the global tilted irradiance Gg,t, involves 

the both a transposition model and an absorption model. 

The transposition model utilized in the study, known as 

Perez1990, is developed for Nordic countries and publicly 

available in the PV_LIB [22]. The absorption model takes 

the irradiance output from the transposition model, the tilt 

of the PV modules, the solar elevation and the angle of 

incidence, to output the global tilted irradiance Gg,t. 

Spectral losses and losses due to snow, soiling and 

shadows are neglected in the model [7]. 

 

2.1.2 Weather and irradiance data 

The weather and irradiance data employed in this 

research is derived from the models STRÅNG and 

MESAN, developed by the Swedish Meteorological and 

Hydrological Institute (SMHI). The STRÅNG model 

produces (global horizontal and direct normal) irradiance 

data for all Nordic countries, with a spatial resolution of 

2.5×2.5 km, on an hourly basis [9]. The MESAN model 

generates hourly meteorological data, such as the ambient 

temperature and wind speed, with the same spatial 

resolution as STRÅNG [10].   

 

2.2 Model validation 

The validation was executed in two steps through a 

comparison between the measured PV power generation 

and the computed generation, derived from the PV power 

model presented in Section 2.1.1. The first validation step 

compares the measured generation to simulated results 

with orientations provided by the reference system 

owners. In contrast, the second validation step employs 

individual LiDAR-derived orientations to all systems. 

This scenario aims to approximate real conditions and the 

resulting aggregated PV power generation. The time 

period for the simulations were limited to the years of 

𝑃𝐷𝐶/𝑘𝑊𝐷𝐶

= 𝐺𝑔,𝑡 [1 +
𝜇

𝜂
(𝑇𝑎 − 𝑇𝑆𝑇𝐶)

+
𝜇

𝜂

9.5

5.7 + 3.8𝑣

(𝑁𝑂𝐶𝑇 − 20)

800
(1 − 𝜂)𝐺𝑔,𝑡], 

(1) 

Figure 1. The tilt and the azimuth of all PV systems in Knivsta Municipality, identified and classified in the study of [10] and 

where the orientations have been calculated by the LiDAR methodology presented in [11].  
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2018−2022, due to the availability of high-resolution 

weather data and LiDAR data since 2018 [10,23]. 

 

2.2.1 Reference data of PV systems 

 Hourly measurements of electricity generation were 

provided by CheckWatt AB for six PV systems        

(PVS1–PVS6), situated in the municipalities scanned in 

[16]. The reference systems have a letter indicating their 

respective municipality; “U” is Uppvidinge, “F” is Falun 

and “K” is Knivsta.  

The gathered information about the reference systems 

were the coordinates (WGS84), the orientation (tilt and 

azimuth), installed DC and AC capacity, module and 

inverter model and the year of installation.  If the systems 

consisted of two or more parts with different orientations, 

the installed DC capacity and orientations of each 

subsystem were reported, as well as the configuration of 

the inverter(s). Details on size and timing of system 

expansion during the studied years were also taken into 

consideration. The information from the reference system 

owners was cross-checked with the Swedish direct capital 

subsidy, system data reported to the local grid owners, the 

size and number of modules, as well as manually estimated 

azimuth from arial images. The characteristics of the 

reference systems are displayed in Table 1 below. 

 

Table I: Characteristics of the reference systems. 

System 

Installed DC 

capacity 

[kW] 

Installed AC 

capacity 

[kW] 

Number of 

sub- 

systems 

PVS1-U 10.1 9.2 1 

PVS2-U 11.4 17.0 1 

PVS3-F 17.2 15.0 1 

PVS4-F 19.5 16.4 3 

PVS5-K 8.1 8.2 2 

PVS6-K 20.9 10.0 4 

 

2.2.2 LiDAR data 

In the second validation step, the orientations of the 

reference systems were derived from LiDAR data. It 

consists of laser pulses which gives spatial 3D-information 

about surfaces [19,24]. The LiDAR dataset employed in 

this research was gathered from SMHI in March 2018, 

with a resolution of 2.5×2.5 km [23]. The data was also 

utilized when simulating the aggregated PV power 

generation for Knivsta Municipality, which is described in 

a following section. 

 

2.2.3 Regression analysis 

For this study, the coefficient of determination (R2), 

the mean absolute error (MAE), the mean squared error 

(MSE), the root mean squared error of residuals (RMSE) 

and the mean bias error (MBE) were calculated for all 

simulations of reference systems PVS1–PVS6. Scatter 

plots for each reference facility were plotted and color-

coded based on the time of day and time of year. The time 

intervals were chosen by applying different intervals and 

their effect on appearing patterns. 

 

2.3 Simulating on a municipal level 

To assess the smoothing effect of the wide spread of 

PV system orientations, the aggregated PV power 

generation was simulated for all identified PV systems 

within Knivsta. The generation was simulated for every 

hour of 2022 for two different scenarios. The first scenario 

assumes that all systems are having the optimal orientation 

for Knivsta, which posits their ability to generate their 

nameplate AC capacity simultaneously. The optimal 

orientation for the period of 2018–2021 was calculated by 

the grid-based optimization tool developed in [8], which 

takes local weather patterns into account, and resulted in a 

tilt of 45.62° and an azimuth of 174.24° for Knivsta. The 

second scenario implements individual orientations 

approximated using LiDAR data. A schematic view of the 

data and models used for simulating the PV power 

generation on a municipal level is illustrated in Figure 2. 

 

2.3.1 Generic module parameters and DC-to-AC ratio 

To simulate the aggregated PV generation for 

distributed systems on a municipal scale, with unknown 

technical properties, generic module parameters were 

estimated based on the year of installation. In a previous 

project, module data sheets of generic PV modules 

available on the Swedish PV market were collected for 

years 2014−2019 [25]. Complementing this database with 

additional data sheets collected for this study from 

Swedish retailers, resulted in a database of 200 different 

data sheets for monocrystalline and polycrystalline 

silicone PV modules available on the Swedish market on 

different occasions between 2015−2020.

 

 
Figure 2. A schematic outline of the models and data for computing the PV power generation for an identified PV system. 
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From this database, an annual average of the following 

module parameters was derived for the years of 

2015−2020; (1) the efficiency η, (2) the installed DC 

capacity, (3) the nominal voltage Vmp, (4) the open circuit 

voltage Voc and (5) the temperature coefficient of the open 

circuit voltage µVoc. Additionally, the NOCT was assumed 

to be 45° for all modules. Consequently, this established 

an average and generic module representing each year 

between 2015 and 2020.  

The installed DC capacity of each system was 

estimated based on the generic module efficiency and the 

LiDAR-corrected PV polygon area. Furthermore, an 

average DC-to-AC ratio was computed to determine the 

inverter curtailment and resulting hourly AC power 

output. A ratio 1.08 was derived from the average DC-to-

AC ratio of 115 PV systems installed on single-family 

houses in Sweden collected for a study in 2020 [26]. The 

assumption was made that all PV systems had the same 

DC-to-AC ratio. 

 

 

3 RESULTS 

This section presents the validation of the PV power 

model. This is followed by the results from simulating the 

aggregated PV generation of distributed systems in 

Knivsta Municipality, using the PV power model.  

 

3.1 Model validation 

The total simulated and measured electricity 

production for the reference facilities is presented in Table 

II and III. As revealed by the tables, it is apparent that the 

model exhibits a consistent tendency to overestimate PV 

generation. Furthermore, it is important to emphasize the 

substantial variability in the percentage variances 

observed across the reference systems. 

 

Table II: The measured and simulated PV power, using 

orientations provided by the reference system owners, and 

the percentual difference compared to the measured 

power. 

System 

 

Simulated  

PV power 

[MWh] 

Measured 

PV power 

[MWh] 

Difference 

[%] 

PVS1-U 41.0 39.0 5.1 

PVS2-U 43.9 40.1 9.5 

PVS3-F 57.0 46.6 22.3 

PVS4-F 67.7 65.5 3.4 

PVS5-K 41.2 31.3 31.6 

PVS6-K 86.3 64.8 33.3 

Total 337.1 287.3 17.3 

 

Table III: The measured and simulated PV power, using 

approximated orientations from LiDAR data, and the 

percentual difference compared to the measured power. 

System Simulated 

PV power 

[MWh] 

Measured 

PV power 

[MWh] 

Difference 

[%] 

PVS1-U 40.9 39.0 4.7 

PVS2-U 42.8 40.1 6.7 

PVS3-F 53.5 46.6 15.0 

PVS4-F 70.3 65.5 7.4 

PVS5-K 41.3 31.3 31.8 

PVS6-K 86.7 64.8 33.9 

Total 335.6 287.3 16.8 

 

Figure 3 provides scatter plots for one of the reference 

systems, PVS2-U, showcasing the results for both 

validation steps. 

 

 

 
Figure 3a. Scatter plot for validation step 1 for PVS2-U, using orientations provided by the reference system owners. The data 

points are divided by colour, showcasing different time-intervals of the day on the left and for monthly time intervals on the 

right. The fitted regression is represented by a continuous line and the dotted line indicates a perfect model. 
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Figure 3b. Scatter plots for validation step 2 for PVS2-U, using individual orientations from LiDAR data. The data points are 

divided by colour, showcasing different time-intervals of the day on the left and for monthly time intervals on the right. The 

fitted regression is represented by a continuous line and the dotted line indicates a perfect model. 

 

Several clusters of data points are apparent in Figure 3, 

at different times of the day and year, as denoted by the 

color-coded representations. These clusters were 

identified in several of the reference systems and are 

conceptually depicted in Figure 4, and are subject to 

further exploration in the subsequent section. 

Comprehensive scatter plots for all facilities are provided 

in Appendix A. 

 

 
Figure 4. A graphic representation of reoccurring patterns 

in the reference system scatter plots. 

 

3.1.1 Daily and yearly variation patterns 

There is one cluster (stars in Figure 4) where the data 

points closely align with the perfect fit, showing that the 

simulated production values correspond well to the 

measured data. Within this cluster, it appears to be a slight 

overestimation of the simulated PV generation compared 

to the measured data. All daytime hours (6 am to 9 pm) 

occur in this cluster. However, a substantial portion of the 

data points is represented by blue dots in Figure 3b and 3d, 

indicating their predominant occurrence within the period 

of April to August. 

A noticeable cluster or "tail" is evident, where the 

simulated PV electricity generation is approximately 

2 kWh (triangles in Figure 4), representing instances 

where the model underestimates the PV generation 

compared to the measured data. This cluster has an upper 

limit, commonly close to 2−3 kWh, see Appendix A. It 

encompasses all hours of the day and months of the year, 

with the highest production levels on the right side, 

aligning with midday and summer months, and gradually 

tapering towards lower values on the left, which coincide 

with night-time and the winter months. This consistent 

behaviour of the PV power estimations, across all months 

and hours, could potentially be attributed to systematic 

faults, such as measurement inaccuracies in the MESAN 

and STRÅNG data. 

An overestimation of the simulated PV electricity 

generation is displayed during the evening hours of 

7−9 pm, as depicted by the red dots in Figure 3 (squares in 

Figure 4). This model overestimation was also observed 

when analysing the difference between the measured and 

simulated values over the day, as there is a peak in the 

percentual difference in-between 8−9 pm. A similar peak 

is discernible in the morning, around 6 am, although its 

magnitude is relatively lower. Additionally, within the 

same cluster, the model appears to overestimate electricity 

generation in the late afternoon hours 4−6 pm, as indicated 

by the green dots in Figure 3. In contrast, the PV power 

model consistently underestimates production during 

night-time and in the early morning hours (cluster of 

circles in Figure 4). This pattern is observed across all 

scatter plots in Appendix A.  

Notably, there are certain hours along the y-axis where 

the power model predicts PV power generation despite the 

absence of measured production (the gray rectangle on the 

y-axis in Figure 4). These events are primarily observed 

during the months of November to March, evident in the 

various scatter plots featured in Appendix A. This pattern 

might be attributed to the losses caused by snow cover, as 

it is not accounted for in the model. 

Lastly, there are some measured production hours on 

the x-axis, mostly during night-time, where the model 

predicts zero power generation. These instances are 

infrequent and generally minor, with only a few 

exceptions. PVS6-K breaks this pattern, exhibiting notable 

c d 
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positive measured values on the x-axis, which are likely 

due to errors in the measurements. 

 

3.1.2 Regression analysis 

 The simulated PV power, using orientations supplied 

by the reference system owners, corresponds well with the 

measured PV generation with coefficients of 

determination between 0.70−0.82. The RMSE, which 

characterizes the typical dispersion of data points around 

the regression line, varies from 0.90−3.41 kWh. Every 

reference facility displays a positive MBE, aligning with 

the model's tendency to overestimate total production. All 

statistical measurements for the two validation steps are 

presented in Table IV and V. 

 

Table IV: Statistical measurements for validation step 1, 

employing orientations from reference system owners. For 

R2, red is the lowest value, green is the highest value and 

yellow is the 50th percentile (median). For the other 

metrics, green is the highest value, and red is the lowest 

value. N denotes the number of hours simulated. 

PVS N R2 
RMSE 
[kWh] 

MSE 
[kWh] 

SSR 
[kWh] 

MAE 
[kWh] 

MBE 
[kWh] 

1-U 33 912 0.77 0.90 4.44 30656 0.44 0.06 

2-U 33 720 0.78 1.02 5.00 34554 0.47 0.11 

3-F 30 806 0.70 3.41 11.52 105008 0.84 0.34 

4-F 42 280 0.73 2.31 8.40 97764 0.71 0.05 

5-K 43 796 0.77 0.52 2.24 22951 0.35 0.23 

6-K 40 188 0.82 1.73 9.45 69620 0.78 0.54 

 

Table V: Statistical measurements for validation step 2, 

employing LiDAR-derived orientations. For R2, red is the 

lowest value, green is the highest value and yellow is the 

50th percentile (median). For the other metrics, green is 

the highest value, and red is the lowest value. N denotes 

the number of hours simulated. 

PVS N R2 
RMSE 
[kWh] 

MSE 
[kWh] 

SSR 
[kWh] 

MAE 
[kWh] 

MBE 
[kWh] 

1-U 33 912 0.79 0.92 4.39 31306 0.45 0.05 

2-U 33 720 0.79 0.99 4.75 33278 0.47 0.08 
3-F 30 806 0.69 3.30 10.59 101670 0.80 0.23 

4-F 42 280 0.74 2.7 9.06 100308 0.71 0.11 

5-K 43 796 0.77 0.52 2.24 22761 0.34 0.23 

6-K 40 188 0.83 1.67 9.59 67166 0.77 0.55 

 

Table IV and V demonstrates that there are varying 

results among the reference systems, with certain systems 

demonstrating a stronger alignment between the simulated 

and measured PV power generation in comparison to 

others. 

When simulating with LiDAR-derived orientations, 

the PV power generation corresponds slightly better to the 

measured values, yielding coefficients of determination 

ranging from 0.69−0.83 and RMSE values from 0.52−3.30 

kWh. Other measurements of correlation produce similar 

outcomes to those observed with orientations provided by 

the facility owners, although the LiDAR-derived 

orientation marginally enhances these metrics as well. 

Nevertheless, this improvement in the relationship 

between the simulated and measured PV power is not 

significant. Unlike verification of the azimuth, which can 

easily be cross-checked using aerial imagery, verifying the 

tilt angle is more challenging. To test the sensitivity of the 

results when varying the angle, the angle was adjusted for 

each reference system. Altering the LiDAR-derived tilt by 

+20° angle led to a cumulative difference in simulated 

power ranging from -4.8−3.9% and altering the tilt by -20° 

led to a difference of -7.5−3.7%.  

When examining the variations in the correlation 

between modelled and measured PV power generation 

over different times of the year, the average coefficient of 

determination for each month is summarized in Table VI. 

 

Table VI: The R2-values each month for the reference 

systems PVS1−PVS6. 
PVS  1-U 2-U 3-F 4-F 5-K 6-K 

January 0.54 0.40 0.51 0.38 0.35 0.42 
February 0.61 0.49 0.59 0.63 0.51 0.67 

March 0.87 0.87 0.75 0.72 0.62 0.85 

April 0.86 0.86 0.78 0.78 0.82 0.85 
May 0.76 0.76 0.73 0.73 0.81 0.78 

June 0.79 0.80 0.74 0.75 0.85 0.77 

July 0.74 0.72 0.72 0.70 0.66 0.79 
August 0.78 0.76 0.70 0.74 0.57 0.66 

September 0.78 0.78 0.73 0.75 0.83 0.80 

October 0.75 0.75 0.67 0.66 0.77 0.82 
November 0.43 0.41 0.52 0.51 0.67 0.70 

December 0.34 0.25 0.29 0.22 0.28 0.36 

 

The R2-values in Table VI are considerably lower for 

the winter months, especially between November–

February. Also, the relative difference in electricity 

generation was calculated to be largest during the same 

months. On the other hand, the total generated power and 

the absolute difference is lower during the winter months, 

compared to the rest of the year.    

 

3.2 Simulating the PV generation in Knivsta Municipality 

The generic module parameters that were derived for 

the relevant years of installation (2015–2020) are 

presented in Table VII. 

 

Table VII: Generic module parameters for silicon 

modules in the years of 2015–2020. 
Year 2015  2016 2017 2018 2019 2020 

η [%] 16.3 17.0 17.8 18.3 18.9 20.5 

Vmp [V] 32.2 31.8 32.7 33.3 35.5 38.2 

Voc [V] 39.5 38.9 40.3 40.4 43.0 45.5 

µVoc 

[mV/℃] 
-123 -122 -124 -117 -127 -124 

Power 

[W] 
265 281 298 309 329 416 

Modules 39 24 24 44 30 39 

Manu-
facturers 

14 15 17 12 9 10 

 

 A trend of rising η, Vmp Voc, and nominal power with 

increasing years is evident and expected. Exceptions from 

this trend, such as a decreasing Voc year 2016, may be 

attributed to limited data that year. Therefore, the number 

of manufacturers and modules used as a basis for 

calculating the average technical parameter are also 

presented in Table VII.  

 Since the generic module parameters are estimations 

from limited data, a sensitivity analysis was conducted. 

The three parameters η, Vmp and µVoc, were adjusted to 

their minimum and maximum values within the dataset to 

test the weakness of these estimations. Altering the 

nominal voltage and the temperature coefficient had a 

minimal impact on the simulated aggregated PV power 

generation, compared to varying the efficiency, which 

significantly influenced the results. 

 

3.2.1 Comparing the two simulation scenarios 

The aggregated PV power generation of Knivsta 
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Municipality 2022 was calculated to 4 601 MWh, when 

simulating with individual LiDAR-derived orientations of 

the distributed systems. Simulating with all systems 

having the optimal orientation (of 45.62° tilt and 174.24° 

azimuth) resulted in a aggregated power generation of 

5 200 MWh. The daily sum of the PV power generation 

for both simulations and the difference between them are 

visualized in Figure 5.  

The difference in PV power between the two cases is 

relatively small during summer months (May–August), 

whereas it becomes considerably lager for the remainder 

of the year, except for the period from November to 

January, during which overall production is lower.  

Given the significance of power generation data for 

grid sizing, a key aspect of this research is studying the day 

with the highest hourly power generation. In Figure 6, the 

days with the highest hourly PV generation for each 

simulation are presented. The peak PV generation in the 

scenario with individual orientations, of 3.72 MWh, 

occurs at 1 pm on May 18th. In the other scenario, where 

all systems are optimally oriented, the peak power 

generation of 4.14 MWh is achieved at 12–1 pm on March 

30th. The simulation considering individual orientations is 

generating 3.28 MWh this same hour. Notably, during the 

hours of peak PV generation for both cases, the scenario 

with optimal orientations reaches the estimated aggregated 

AC capacity of 4.14 MWh. This scenario also reaches its 

peak another time, at 12 pm on April 5th, though this is not 

included in the figure. In contrast to the scenario 

implementing an optimal orientation, the scenario with 

individual orientations never generates the aggregated AC 

capacity, which is illustrated in Figure 6. This can be 

explained by that the orientations for PV systems in 

Knivsta Municipality are not optimally oriented, as 

evidenced by the dispersion in Figure 1.  

 

 

 
Figure 5. The daily aggregated PV power generation for Knivsta Municipality 2022, simulated for two different scenarios, and 

the daily difference in generation between the scenarios. 

 

 
Figure 6. The aggregated PV power generation for two days with the highest generation hours 2022. The black line is the 

estimated aggregated AC capacity for Knivsta Municipality. The lower graph shows the peak hour with individual orientations 

on 1 pm May 18th and the graph above shows March 30th, where all optimal orientations achieve the aggregated AC capacity. 
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 Another important aspect for comprehending PV 

generation characteristics is the average production curve. 

Figure 7 presents the average simulated power generation 

across all hours of the day for both scenarios. During 

morning and evening periods, the case of individual 

orientations exhibits higher simulated PV power 

generation. Conversely, the remaining hours of the day 

show greater production with all systems optimally 

oriented. Consequently, there are intersections occurring 

roughly at 8 am and 5 pm. 

 The peak mean production is observed at noon in both 

simulation scenarios, reaching 1.57 MWh for systems 

having individual orientations and 1.87 MWh for 

optimally oriented systems. It is important to note, as 

depicted in Figure 7, that neither of the average production 

curves approaches the estimated aggregated AC capacity 

for Knivsta Municipality. This average is with respect to 

all seasons, including the winter months characterized by 

low PV production.  

 

 

4 DISCUSSION  

It is essential to clarify that in simulating the 

aggregated PV power generation at the municipal level, 

certain assumptions were made, introducing uncertainties 

in the study's findings. Firstly, each polygon within 

Knivsta Municipality was modelled to have an individual 

inverter and a fixed DC-to-AC ratio, due to the lack of 

information on the actual configuration. In practice, some 

polygons may constitute subsystems situated within the 

same facility, potentially sharing a common inverter. 

Secondly, the generic module parameters for each year 

between 2015−2020 were based on the average from 200 

modules on the Swedish market (ranging between 24−39 

modules for each year). A more comprehensive dataset 

would be beneficial to refine the approximations of 

generic parameters. The importance of accurately 

estimating the module efficiency was highlighted in a 

sensitivity analysis, since varying this parameter 

significantly influenced the results. Additionally, the DC-

to-AC ratio which governs the AC electricity generation, 

is currently sourced from 115 private residential PV 

systems. Expanding the database to include broader 

system capacities and different typical DC-to-AC ratios of 

different market segments would probably improve DC-

to-AC ratio estimations. 

Furthermore, it would be appropriate to compare the 

current inverter model of the Steca Grid 300 efficiency 

curve with other alternatives.  

Another know drawback of the simulations are the 

inaccuracies in the weather and irradiance data sourced 

from the MESAN and STRÅNG models, which 

significantly impact the precision of the results. Though 

the average error statistics are not published for the studied 

years, as a reference, during the period from 1999−2009 

the hourly RMSE for global radiation and the direct 

normal radiation from STRÅNG was 30% and 57%, 

respectively [27]. 

The initial finding in this study was that the modelled 

PV power corresponds well to the measured PV power 

generation. The results were marginally better when 

employing orientations obtained from LiDAR. This 

observation aligns with prior research [19], affirming a 

higher reliability of LiDAR data in orientation estimation 

compared to manual estimations of the PV system owners. 

 The model tends to overestimate PV power generation, 

especially in the late afternoon. This is possibly due to 

temperature differences between assumed and actual cell 

temperatures. The model employs air temperature data 

from MESAN, while cell temperatures tend to be higher in 

the afternoon, due to heat accumulation within modules 

and the roof. Consequently, the simulation might 

overestimate PV power generation when using a 

temperature coefficient based on lower cell temperatures. 

Likewise, the opposite situation applies to the morning 

discrepancy, wherein measured production exceeds the 

simulated production. Another explanation for the 

overestimation could be unaccounted shadowing effects 

from the surroundings. One study revealed that shading led 

to a 35% reduction in the anticipated global maximum 

power point for monocrystalline modules and a 33% 

decline for polycrystalline modules [28].  

 Further, considerably larger percentage errors of the 

simulated production compared to the recorded 

production, were noted during months of winter, 

accompanied by reduced R2-values. One plausible 

explanation could be the influence of snow cover losses. 

A recent study estimated these losses to vary between 

0−20% of the annual PV power generation yield in 

Sweden when using an average tilt angle of 25° [29], 

which differs from the mean tilt angle of the reference 

systems at 31°. Notably, the current PV power simulation 

model does not account for snow losses, potentially 

leading to an overestimation of PV electricity generation. 

 Since the largest absolute error between modelled and 

measured production occurs in summer daylight hours, 

shading-related losses exert a significant impact on 

simulation outcomes. Snow-related losses, on the other 

hand, have a comparatively smaller effect due to lower 

absolute magnitudes of simulation errors in winter. 

Therefore, the implementation of a shadow loss model is 

more crucial for enhancing result accuracy. 

 

 

5 CONCLUSION 

 A model for simulating the historic PV power 

generation from individual systems was validated, 

employing LiDAR-derived orientation, as well as local 

Figure 7. The hourly average PV electricity generation 

curve simulated for 2022. The black line is the 

approximated aggregated AC capacity of 4.14 MWh for 

Knivsta Municipality. 
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weather and irradiance data generated by the models 

STRÅNG and MESAN. Simulating with orientations 

provided by the reference system owners resulted in        

R2-values between 0.70–0.84. Using orientations from 

LiDAR-data resulted in overall slightly improved metrics, 

indicating that LiDAR-data can be used to adequately 

estimate unknown orientations and may even generate 

more accurate results. Hence, the results from the 

validation suggest that the PV power model is valuable for 

estimating hourly PV power generation and that LiDAR 

data accurately estimates the orientations. Currently, the 

PV model neglects both shading and snow losses. 

Integrating these losses might decrease overestimations of 

the PV power model, thus enhancing accuracy.  

 The PV electricity generation model was further 

developed and used to estimate the aggregated distributed 

PV power generation in Knivsta Municipality. Simulating 

the aggregated distributed power generation considering 

unique LiDAR-derived orientations, never reached the 

total AC capacity installed in Knivsta. Furthermore, it was 

shown that the installed AC capacity is not generated in a 

synchronized manner. Instead, there is a noticeable 

smoothing effect in the daily pattern of the aggregated PV 

generation when implementing individual orientations, 

compared to one optimal orientation. This is explained by 

the wide spectrum of orientations in Knivsta. An initial 

quantification of this effect is that the power generation 

was 10% lower at the peak hour 2022, when considering 

individual orientations compared to assuming a uniform 

optimal orientation. This discovery can free grid capacity 

for further deployment of distributed PV systems. 
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Appendix A 

 

Appendix displaying scatter plots of the remaining five PV systems (PVS1U, PVS3F, PVS4F, PVS5K and PVS6K) that were 

used in this study for the validation of the previously mentioned PV power model.

 

  

 

 

 

 
 

Figure 8. In (a) and (b), scatter plot for validation step 1, and in (c) and (d) validation step 2 for PVS1-U, both steps using 

known module- and inverter parameters disclosed by the system owners. The data points are divided using colour for time-

intervals of the day in (a) and (c), and for monthly time intervals in (b) and (d). The fitted regression is represented by a 

continuous line and the dotted line indicates a perfect fit. 
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Figure 9. In (a) and (b), scatter plot for validation step 1, and in (c) and (d) validation step 2 for PVS3-F, both steps using 

known module- and inverter parameters disclosed by the system owners. The data points are divided using colour for time-

intervals of the day in (a) and (c), and for monthly time intervals in (b) and (d). The fitted regression is represented by a 

continuous line and the dotted line indicates a perfect fit. 

 

 

  

b 

d c 

a 

40th European Photovoltaic Solar Energy Conference and Exhibition

10.4229/EUPVSEC2023/5DV.2.10
020527-012



 

 

 
 

 

 
 

Figure 10. In (a) and (b), scatter plot for validation step 1, and in (c) and (d) validation step 2 for PVS4-F, both steps using 

known module- and inverter parameters disclosed by the system owners. The data points are divided using colour for time-

intervals of the day in (a) and (c), and for monthly time intervals in (b) and (d). The fitted regression is represented by a 

continuous line and the dotted line indicates a perfect fit. 
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Figure 11. In (a) and (b), scatter plot for validation step 1, and in (c) and (d) validation step 2 for PVS5-K, both steps using 

known module- and inverter parameters disclosed by the system owners. The data points are divided using colour for time-

intervals of the day in (a) and (c), and for monthly time intervals in (b) and (d). The fitted regression is represented by a 

continuous line and the dotted line indicates a perfect fit. 
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Figure 12. In (a) and (b), scatter plot for validation step 1, and in (c) and (d) validation step 2 for PVS6-K, both steps using 

known module- and inverter parameters disclosed by the system owners. The data points are divided using colour for time-

intervals of the day in (a) and (c), and for monthly time intervals in (b) and (d). The fitted regression is represented by a 

continuous line and the dotted line indicates a perfect fit. 
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