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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• High resolution statistics can be gener
ated through remote sensing aerial 
imagery. 

• Successive generation of training data 
and re-training improves the accuracy. 

• An accurate ground truth makes it 
possible to quantify undetected solar 
systems. 

• Frameless modules on dark roofs tend to 
be harder to detect.  
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A B S T R A C T   

As a mean to monitor the rapid expansion of the highly decentralized PV market, identifying solar energy systems 
in aerial imagery by deep machine learning, is a research field that is getting increasing interest. One general 
challenge in the field is to create testing data of high quality that are representative of the end-use application. In 
this study we use the open source convolutional neural network developed within the DeepSolar project and 
apply it in the country of Sweden, for the purpose of generating market statistics, by scanning three complete 
municipalities for small decentralized photovoltaic and solar thermal systems. The evaluation of the performance 
is done against a highly accurate ground truth, which was created by cross-checking the classification results 
with the inventory of the local distribution system operators and the database of photovoltaic systems that have 
received a capital subsidy in Sweden, and combining that with physical onsite inspections. A process of generate 
additional training data and re-training the algorithm after each municipality scan was developed, which suc
cessively improved the accuracy, resulting in that 95% of all detectable photovoltaic, excluding building inte
grated and vertical systems, and 80% of all detectable solar thermal systems were correctly identified in the last 
municipality scan. The accurate ground truth allowed a quantification of why some systems are not detected. The 
generated dataset of solar energy systems could be connected to existing building and property inventories, 
which allowed creation of market segment statistics with remarkably high detail information.    
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Abbreviations 
BIPV Building Integrated Photovoltaics 
CNN Convolutional Neural Network 
DSO Distribution System Operator 
PV Photovoltaics 
SES Solar Energy System 
ST Solar Thermal 

1. Introduction 

The conversion of the solar radiation to energy forms usable by the 
human society is increasing. Heating of buildings globally amounts to 
260 300 TWh, which represents about 50% of global final energy use, of 
which 407 TWh was supplied by solar thermal (ST) applications in 2020 
[1]. However, the global photovoltaic (PV) market is currently growing 
faster than the ST market [2], and has generally outpaced expectations 
over the past decade [3–5]. PV power production contributed to about 
997 TWh in 2020, which corresponds to approximately 4% of the global 
electricity demand [2]. 

The scalable, low complexity and modular characteristics of the solar 
energy systems (SES) technologies lead to lower absolute unit costs and 
investment risks [6], which has made it possible for a large range of 
stakeholders to purchase, install and use the PV or ST technologies 
worldwide. Small-scale ST systems for direct heating of buildings or 
facilities represent about 60% of the installations [1] and likewise the PV 
market is made up of about 40% distributed systems [2]. 

The vast range in systems sizes and applications makes it hard for 
stakeholders to track the historical ST and PV deployment, and thereby 
accurately monitor the development on a global scale. The International 
Energy Agency Photovoltaic Power System Programme (IEA PVPS) has 
compiled information about how the registration of stationary PV sys
tems is handled in several countries and suggests that countries should 
operate a compulsory database of PV power systems [7]. The recom
mendation is that such a database should cover all systems, not just 
those that receive different types of subsidies. However, in some coun
tries that have implemented registration databases, small systems may 
legally be grid connected with no registration (or not reinforced), 
meaning there may be no official documentation of their existence 
[7–10]. In addition, the administrative capacity to follow the installa
tion of PV systems is lacking in most countries. To expect all countries to 
implement and manage such a database as suggested by the IEA PVPS 
within the foreseeable future is unrealistic. The significant number of PV 
systems that have been [2], and will be installed [3,11,12], put pressure 
on public authority monitoring. The global ST market is also projected to 
grow in the coming years [13], but not at the same accelerated pace as 
the PV market. Hence, it is important to develop other methods to assess 
PV installation volumes. 

A potential option to manually register stationary PV systems, which 
is gaining increasing interest in the scientific literature, is to identify PV 
systems and estimate their size, through remote sensing aerial imagery 
from satellites or planes and deep machine learning [14]. It has been 
proven that it is possible to generate databases of PV systems with exact 
location [10,15–24] and type of buildings [10,15,24] or land [17,25] 
used for the PV installations by this methodology, and combine these 
databases with socio-economic data for demographic investigations [15, 
23,24]. Furthermore, this method has the potential to find off-grid and 
behind-the-meter PV installations that are either not registered or poorly 
visible to distribution system operators (DSO) [10]. However, PV sys
tems need to be visible from the sky and have the clear characteristics of 
regular modules to be registered by this method, which means that 
vertical or high-tilted systems along with building integrated PV (BIPV) 
will not be identified. So far, most studies investigating this option have 
been focusing on generation of training images [26,27] or method 
development and validation [16,18,19,25,28–32], rather than statistic 
generation. However, three projects have used this approach to generate 
PV system inventories; the DeepSolar project, which detected 1.47 
million PV systems across the US [15] and the DeepSolar++ model 
which produced a spatiotemporal dataset of 383 727 installations with 
installation year in the US [23], the inventory of [17], which mapped 68 
661 commercial-, industrial- and utility-scale PV installations globally 
by remote sensing imagery between June 2016 and September 2018, 
and the Netherlands’ Cadastre (Land Registry and Mapping Agency) that 
detected 156 637 buildings with PV in the three regions in the 
Netherlands. In addition, [21,22] combined neural network classifica
tion in aerial images and 3D building data to generate location, capacity, 
tilt and azimuth for existing PV systems and compared the result with 
the official German PV registry with more than one million buildings, 
and [20] evaluated the accuracy of mapping PV systems through aerial 
imagery and estimating their installed capacity as compared to a like
wise imperfect dataset if 33 114 PV installations in the state of Con
necticut, US. 

In this study we address the issue of identifying small decentralized 
grid-connected and off-grid PV, along with ST systems, by aerial imagery 
and deep machine learning for statistic generation. We use the publicly 
available database and code from the convolutional neural network 
(CNN) DeepSolar framework [15] and apply it in the country of Sweden, 
which has a PV market with a relatively high number and share of sta
tionary off-grid PV systems [33], small decentralized PV systems [34], 
and small-scale ST systems [35]. 

This study aims to make a contribution to the scientific community 
by assessing the real-world accuracy of identifying small decentralized 
PV and ST systems by a CNN aerial image classification algorithm by 
using aerial imagery of a combined area of 3 513 km2 across three 
Swedish municipalities. While previous assessments of this kind have 
been conducted at a comprehensive level in the US [19], the Netherlands 
[10], and Germany [21], this research extends the scope by evaluating 
the algorithm’s practical utility as an inventory tool and a statistical 
method for enhancing solar energy market development analyses. 
Additionally, the study establishes a highly accurate ground truth 
dataset, enabling a detailed quantification of the factors contributing to 
the non-detection of certain PV systems, an aspect that has not been 
extensively analysed before. Notably, the use of aerial imagery and deep 
machine learning to identify and separate ST from PV systems has to our 
knowledge only been done by [23]. By addressing these research gaps, 
the goal of this study is to advance our understanding of the potential 
and limitations of utilizing deep learning and aerial imagery in solar 
energy market assessments. 

2. Background 

2.1. The Swedish solar thermal market 

In Sweden, the interest in ST has varied over the last decades, where 

Fig. 1. Annual installed ST capacity in square meters based on voluntary sales 
statistics collected by Research Institutes of Sweden AB (RISE). 
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small-scale decentralized systems of less than 15 m2 have largely driven 
the Swedish market, as shown in Fig. 1. Just like in the general situation 
in Europe [1], unglazed absorbers and flat plate collector systems ac
count for the largest shares in Sweden. 

Between 2000 and 2011, an investment subsidy for private in
dividuals and small-scale systems was in place in Sweden [36], and a 
majority of the current Swedish ST systems were installed in that period. 
In 2011, the investment subsidies for ST were phased out after a total of 
88 million SEK had been distributed, of which 98% was paid to 
single-family homeowners [36]. The Swedish ST market has since then 
declined, as Fig. 1 illustrates, as ST systems have had difficulty being 
profitable enough to be attractive with pure market conditions [35], 

which are in line with findings about the economics of unsubsidised ST 
in other European countries at the time [37]. 

Today, there is no direct support system for ST in Sweden. However, 
the installation costs for the ST systems are entitled to the Swedish ROT1 

tax deduction. The annual additions of ST systems are therefore small 
and are assessed through sales surveys sent to the ST installation firms, 

Fig. 2. Annual installed PV capacity in MW [33] based on statistics from Statistics Sweden for grid-connected systems, and sales statistics for off-grid and estimations 
regarding marked segments done within the Swedish IEA PVPS task 1 work. 

Fig. 3. The municipalities (yellow) used to draw initial training data from, with the number of image tiles from each municipality in parenthesis, and the three 
municipalities (red) that were scanned fully to create a solar inventory. 

1 ROT is a collective term for measures to renovate and upgrade existing 
buildings owned by private individuals. The ROT-tax deduction in 2021 was 30 
% of the labour cost and of maximum 50 000 SEK for the installation of a SES. 
The requirements are that the house is older than five years. 
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with no geographical resolution at all. Just as in most other countries, ST 
systems are not registered by any Swedish authority and the knowledge 
of the market is therefore poor. It is assumed that most of the ST systems 
from the golden years of 2000–2011 remain up and running. However, 
their technical lifetime is coming closer to an end, so it would be 
beneficial to find ways to assess the decommission rate of ST systems in 
Sweden. 

2.2. The solar photovoltaic market in Sweden 

Historically, the Swedish PV market almost exclusively consisted of a 
small but stable off-grid market where the majority constituted of sys
tems for holiday cottages, marine applications and caravans. The 
installation of grid-connected PV systems in Sweden can be said to have 
taken off in 2006 when about 300 kW was installed [33], and since 2007 
more grid-connected PV capacity than off-grid capacity has been 
installed annually. The grid-connected market is to a large extent made 
up of distributed roof-mounted systems installed by individual home
owners, companies, municipalities, farmers, etc, see Fig. 2, and the 
dominating business model is to sell turnkey PV systems to these prop
erty owners [38]. So far only 8% of the grid-connected capacity is rep
resented by ground-mounted centralized PV parks [33,39]. 

Already from the start, the Swedish market for distributed PV has 
been driven by self-consumption, as there has never existed a feed-in 
tariff in Sweden [33]. Capital subsidies in combination with a feed-in 
premium scheme, that add value for the excess electricity, have until 
now been crucial for this business model to work in Sweden. The 
Swedish capital subsidy programme was active between 2009 and 2021 
in its latest form. Prior to that, there was support for energy efficiency in 
public premises, where PV was included as an eligible investment that 
could be applied for. The capital subsidy programme has been modified 
several times and the support level has been decreased as the market 
grew and prices fell. From 2009 to the end of 2021 a total of 3 545 
million SEK has been disbursed [33]. However, as of 2022 no subsidies 
exist except for the private domestic PV market segment. 

It is mandatory to notify the DSO when a PV system is connected to 
the grid. It is usually the AC power limit of the inverter, as this sets the 
limit of the power that can be fed into the grid, along with the com
mission date that is registered, but some grid operators also register the 

DC power of the system. Therefore, a DSO should have all the grid- 
connected PV systems within their grid area registered, and they are 
obliged to share the accumulated power with a geographical resolution 
on a municipality level with the Swedish Energy Agency once per year. 
Hence, no national database of all PV systems exists in Sweden. 

3. Methodology and data 

The work in this study is based on the classification branch of the 
open-access CNN DeepSolar framework [15], which identifies PV sys
tems in aerial images. A slightly modified version of this CNN classifi
cation algorithm was used to scan the whole spatial area of the three 
Swedish municipalities; Uppvidinge, Falun and Knivsta (shown in 
Fig. 3). In this study, Python has been used as the programming lan
guage and QGIS as the programme for analysing the gathered and 
created geodata. 

Fig. 4 illustrates the general workflow to create data sets of PV and 
ST systems for each municipality. In the following sections, the steps in 
this workflow are explained in detail. Section 3.1 describes the data 
sources. Section 3.2 describes the creation of a Swedish basic training set 
and how that is combined with an open-access training set from Ger
many. Section 3.3 describes the CNN classification algorithm. Section 
3.4 defines the procedure to create a ground truth dataset for each 
municipality and the corresponding polygon layer shape file. Section 3.5 
list the methods used to evaluate the results from the procedure of 
scanning municipalities. Section 3.6 describes how additional training 
data was gathered from each scanned municipality. 

3.1. Data 

Orthophotos provided by the Swedish Land Survey (Lantmäteriet) 
were used as the aerial images. Each orthophoto cover 2.5 × 2.5 km, 
which corresponds to 15 625 × 15 625 pixels, i.e., an original resolution 
of 0.16 m/pixel. A detailed description of the orthophotos is found in 
Appendix A. For the classification, the images are upsampled from tiles 
of size 115 × 115 pixels to 299 × 299 to match the DeepSolar format. 
The spatial resolution of the upsampled images is thus 0.0615 m/pixel. 
The aerial images of Uppvidinge in 2020 were taken either 2020-05-31 
or 2020-06-01, of Falun in 2020 were taken either 2020-05-21, 2020-06- 

Fig. 4. Schematic illustration of the workflow of this study to create the SES database, with PV and ST systems from three municipalities. The letter P in the training 
set boxes stands for number of positive images and N stands for number of negative images. 
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11 or 2020-06-14, of Knivsta in 2019 were taken either 2019-07-19 or 
2019-07-20 and the aerial images of Knivsta in 2021 were taken either 
2021-04-16 or 2021-04-18. 

For statistical classification of the SES’s, official classification regis
tries with standard definitions of both real properties and buildings are 
used. Firstly, the Swedish Tax Agencys (Skatteverket) classifies the 
purpose of all real properties for property taxation in a three-digit type 
code. See Appendix A, for a detailed description of the eight main 
categories. 

Secondly, the Swedish Land Survey offers different geodata products. 
In this study we use; (1) “AY — Polygon layer with real properties and 
joint properties” and (2) “BY — Polygon layer with buildings”, which are 
described in detail in Appendix A with the whole list of codes, purposes 
and descriptions. 

3.2. Initial training dataset creation 

Two different data sets were combined to train the CNN classification 
algorithm before the first complete scan of a municipality was con
ducted. Firstly, the open access data set called OpenNRW_train_16 from 
[29] was used, which is a data set from North-Rhine Westphalia state in 
Germany containing 1 814 positive and 36 790 negative image tiles, 
with an upsampled resolution of 0.05 m/pixel. 

Secondly, a Swedish set of images was created for fine-tuning [19] 
the DeepSolar CNN classification algorithm for Swedish conditions. This 
set was generated by using the database of the Swedish capital subsidy 
programme to locate properties that have received support for PV 
installation. This was done in eight municipalities from different parts of 
the country, see Fig. 3. Then orthophoto image tiles overlapping these 
properties were extracted and manually labelled as “positive” if they 
contained a PV system or “negative” if not. This was done following a 
similar approach suggested by [18,26,29] with two annotators (engi
neering students) going through all image tiles. If both annotators 
agreed on an image tile it was labelled accordingly. In cases there was a 
disagreement between the two annotators, a third annotator (the main 
author of the study) made the final judgement if the image tile was 
positive or negative, which took place for about 0.5% of the images. The 
number of image tiles from each municipality is listed in parentheses in 
Fig. 3. In total 3 793 positive and 15 442 negative image tiles were 
generated this way, which should be noted only refers to PV systems. For 
the record, the mean solar panel proportion distribution [40] was found to 
be lower in the Swedish training set compared to the German. No 
training set for ST systems could be created in a similarly efficient way, 
as there does not exist any register of ST systems in Sweden. 

The images of the German OpenNRW_train_16 set were scaled down 
from 320 × 320 pixels to 299 × 299 pixels, so that the sizes of the image 
tiles had the same size as the Swedish ones. For comparison, the reso
lution of the German image tiles is 0.0545 m/pixel and the Swedish 
0.0615 m/pixel. These two data sets were combined for training the 
CNN classification algorithm, and we refer to this combined training set 
as the base set in the rest of the article. The base set, hence, contains 5 
607 positive and 52 232 negative image tiles in total. 

3.3. The CNN classification algorithm 

The CNN classification algorithm is the one described in [15], but 
modified to run using Pytorch2. Of the three pytorch models available 
from the papers [29] and [21] we choose the file called Deep
Solar_GoogleMaps_classification.tar as a starting point, as training that 
model with our base set gave better results on a test set consisting of 2000 
images from Sweden. The training was done for 100 epochs and all 
layers of the model were set as trainable. The imbalance rate (the weight 
given to the rarer samples in the loss function) was set to five, as this 
setup was considered the best after an iterative value analysis. 

3.4. Creation of a ground truth 

The initial step in creating a “ground truth” for a municipality is 
scanning all the orthophotos for that municipality using the CNN clas
sification algorithm. All orthophoto tiles classified to contain a SES were 
added to a shape file. This shape file in combination with data from the 
Swedish capital subsidy programme, in which each property that has 
received support is registered, was used as a support for manually 
identifying SESs in the municipalities. The location and the system 
boundaries of the identified PV and ST systems were marked by creating 
polygon objects in a separate shape file. In addition, the polygon object 
was manually assigned the technology, i.e., if was a ST or PV system. 
Through the polygon object, the identified systems were assigned co
ordinates and a 2-dimension area extent seen from above. Examples of 
identified solar thermal and PV systems are illustrated in Fig. 5. 

By the AY polygon layer, illustrated by the thin dark red lines in 
Fig. 5, the property designation (real estate boundary) can be assigned to 
the solar energy polygon objects. Similarly, the BY polygon layer is used 
to appoint the SES polygon objects the detailed purpose code of the 
building it is installed on. The BY polygon layer is shown as a yellow- 
semi-transparent area in Fig. 5b and c. 

Some SESs are ground mounted. In this study, a SES is assigned the 
detailed purpose of the closest BY polygon layer object if it is found 
within 5 meters (in the real world) and is given the detailed purpose 
“ground” if the SES polygon object is >5 meters from the closest BY 
polygon layer object. The reason for this approach is the shift artefact 
that sometimes occurs between the BY polygon layer as compared to the 
orthophoto, which arises for tall buildings when the aerial image was 
not taken directly from above (previously discussed by [10]). Such a 
shift is illustrated in Fig. 5c, where one side (with balconies) of a tall 
multi-family house can be seen in the image. In some cases where this 
method gives the wrong result, the solar system polygon objects have 
been corrected and assigned the proper building manually. 

The property designation is the identification key used to connect the 
identified PV systems to the information that exists for individual PV 
systems in the local DSÓs databases. The identified PV systems were 

Fig. 5. Examples of identified PV (blue) or ST (red) 
systems in the Swedish Land Survey product Ortho
photo ©. In (a) PV modules installed on a detached 
residential house main building and adjacent garage 
with AY- Polygon layer from the Swedish Land Survey 
marking the boundaries of the property shown with a 
thin dark red line. (b) Same PV system and building, 
but with the BY- Polygon layer from the Swedish Land 
Survey marked with semi-transparent yellow shapes on 
top of the aerial imagery. (c) One ST and one PV system 
on two different multi-family houses within the same 
property.   

2 The code can be downloaded from https://github.com/wangzhechen 
g/deepsolar_pytorch. 
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crosschecked with the two local DSÓs internal databases in the munic
ipalities of Falun and Knivsta. Unfortunately, this was not possible for 
the Uppvidinge municipality, as the local DSO believed that this would 
contravene their internal juridical arrangement. Through the crosscheck 
procedure, some systems could be corrected in terms of technology, and 
PV systems that were not detected could be identified and added as 
polygon objects by looking in the aerial imagery at the property desig
nation where the DSO had registered a PV system that was not found by 
the CNN classification algorithm. 

The lack of a registry of ST systems, made it impossible to crosscheck 
the identified ST systems in the same way as was done for PV systems. 
However, ST systems manually detected in the aerial imagery, but not 
identified by the CNN classification algorithm were also added as 
polygon objects. 

In a last step, physical on-site inspection was conducted to verify the 
existence of an SES, or the type of technology (PV or ST), in case of 
uncertainty in all of the three municipalities, and the polygon objects of 
SESs were corrected in some cases. The final shape files containing 
added and corrected polygon objects of PV and ST systems are hereafter 
referred to as the “ground truth”. 

3.5. Evaluation methods 

Accuracy analysis is important for deep learning model evaluation. 
As we in this study use a slightly modified version of the CNN DeepSolar 
framework, the same method as in [15,29] is used for evaluating the 
classification, i.e., using metrics based on true/false positives/negatives, 
where a true positive (TP) corresponds to the CNN finding an actual SES 
within an image tile. 

From the total number of TP, false positives (FP), true negatives (TN) 
and false negatives (FN) we evaluate our model runs for each munici
pality in terms of the precision, sometimes also referred to as “correct
ness”, which is defined as; 

precision =
TP

TP + FP
(1)  

and the recall, sometimes called “completeness”, which is defined as; 

recall =
TP

TP + FN
(2) 

Precision measures the ratio of correct predictions among positive 
predictions, while recall measures the ratio of actual positive samples 
that can be identified [33]. In addition, also the F1 score is calculated 
[10,19,28], which is an overall measure of a model’s accuracy defined 
by the harmonic mean of precision and recall;  

F1 = 2 ×
Precicion × Recall
Precicion + Recall

(3) 

However, as the image tiles that are evaluated at a municipality scan 
are positioned side by side in our setup, it is inevitable that some tiles 
only will consist of a very small area of a SES, i.e. a low solar panel 
proportion. Logically it is harder for the CNN classification algorithm to 
correctly identify a SES when only a small chard of a SES is in it. 
However, in some cases the CNN algorithm was shown to be capable of 
identifying small systems containing only one or two panels, for instance 
in Fig. 6b, the bottom image tile is only 0.7 m2. 

To deal with the uncertainty of images containing only very small 
parts of a SES, we define a category of image tiles as borderline tiles. 
These tiles represent all image tiles that only cover 0–0.5 m2 of SES 
polygon objects from the ground truth dataset. Borderline image tiles 
are considered neither positive, as it in many cases would be unrealistic 
to expect the CNN classification algorithm to correctly identify a very 
small shard of a solar energy panel, nor negative, as they actually 
contain a part of a SES and therefore would be wrongly labelled if the 
CNN classification algorithm detected the shard of the SES. The 
borderline tiles are therefore removed from the total set of image tiles in 
the accuracy evaluation but are listed for reference. 

Just as [10] points out, classification accuracy is the ratio of correct 
predictions to the total number of input samples, and as most image tiles 
dońt contain a SES, high accuracy would be achieved if all tiles were 
classified as negative. So, in addition to the analysis of individual image 
tiles, a second approach based on object-wise metrics, which is prefer
able for counts of SES arrays [20], to evaluate the accuracy is proposed 
and used in this study. As the goal of this study is to evaluate the pos
sibility to use CNN frameworks to generate solar energy statistics and to 

Fig. 6. An off-grid PV system on a small garbage collecting building containing two PV modules. (A) A regular photo of the system. (B) The corresponding 
orthophoto ©, from the Swedish Land Survey, of the system, and the two image tiles overlapping the system. 

Fig. 7. PV polygons (blue-framed in A) on two barns con
taining several sets of PV modules with spaces in between each 
set, in a orthophoto © from the Swedish Land Survey. (A) Ex
amples of true positive image tiles (green), false negatives 
(magenta) and true negatives (black), along with ten PV 
polygon objects on the left barn and nine PV polygon objects 
on the right barn. (B) The positive image tiles are numbered at 
the top of each square and the total area of the PV polygon 
objects in each of the positive image tiles is listed at the 
bottom.   

J. Lindahl et al.                                                                                                                                                                                                                                 



Energy and AI 14 (2023) 100300

7

use it as an inventory tool, it is of higher importance that at least one part 
of a SES is identified and not all parts of it. Fig. 7 illustrates such an 
example. In Fig. 7a, all six image tiles covering the PV polygon objects 
on the right barn were correctly classified as positive, i.e., TP, while 
three of the image tiles on the left barn were classified as negative by the 
CNN classification algorithm, i.e., FN. The PV polygon objects in Fig. 7a 
marked 1, 7, 8 and 9 are partly covered with an image tile that the CNN 
classification algorithm has labelled as positive. A polygon object that is 
fully or partly overlapped by one or several true positive image tiles, like 
the mentioned example, is defined as a “detected polygon”. 

We define a system as a group of solar panels located on the same 
building. If any of the polygons on the building is overlapped by at least 
one true positive image tile, it is defined as a “detected system”. 

Furthermore, a property can contain several buildings with SESs on 
each of them. In Sweden the DSOs regard everything behind each grid 
connection point as one single electrical system, and properties usually 
only have one grid connection point each. So, in order to match this 
definition and compare the results to the registries of the DSOs, we 
create a third polygon group that contains all solar energy polygon ob
jects within a property. Likewise, if such a property polygon group is 
overlapped by one or several true positive image tiles, it is defined as a 
“detected property”. 

The detected polygon object-wise metric is compared to the total 
number of polygon objects in the ground truth of a municipality, while 
detected system and detected property are compared to the total number of 
buildings and properties, respectively, in a municipality that according 
to the ground truth dataset contained a SES. 

3.6. Generating additional training data 

After the creation of the ground truth for a municipality, additional 
training data can be generated from that municipality, as all image tiles 
covering the municipality have been labelled either TP, TN, FP or FN. 
Since a class imbalance situation for data, where PV panels make up a 
small part of the whole image, poses a challenge for the training of deep 
learning models [40], one need to find the right balance on how large of 
an area of a solar system that a positive image tile should contain for it to 
be a good sample to train the CNN classification algorithm on. There
fore, an investigation was performed after the first municipality scan of 
Uppvidinge, which used the base set training data. The investigation was 
performed on the second municipality (Falun) in which the CNN clas
sification algorithm was trained with the base set plus complementary 
image tiles from Uppvidinge. Based on the ground truth polygon layer of 
Uppvidinge municipality, positive training samples were defined as 
image tiles that contained at least an area X = [0.5, 2.5, 5, 7.5 m2] of a 
part, but not the entire, solar energy polygon. However, in case an image 
tile contained the entire solar system polygon object, the limit of at least 
0.5 m2 (see Section 3.5) was kept in all of the runs. The negative samples 
added for the additional training were all the FP image tiles from 
Uppvidinge. Hence, since X was varied, the number of positives varied in 

each training set used for the four scans of Falun. To concretize this in an 
example it would have meant that all eleven positive (green) image tiles 
in Fig. 7b would have been used as positive training samples if X = 0.5 
m2. If X = 2.5 m2, image tile 5 would have been left out for the training, 
and if X = 5 m2 also tile 9 would have been omitted. The four additional 
training sets from Uppvidinge are denoted Upp.0.5m, Upp.2.5m, 
Upp.5.0m and Upp.7.5m, respectively. 

4. Results 

The result of the evaluation of the CNN classification algorithm 
capability as means of generating statistics about the PV market is 
presented in this part. Firstly, Section 4.1 discuss the definition of un
detectable SESs and Section 4.2 the main reasons why some SESs are not 
detected by the CNN classification algorithm. Then follows the evalua
tion of the CNN classification algorithm and generation of additional 
training data analysis in Section 4.3 based on the metrics of precision, 
recall, detected polygon, detected system and detected property. Sec
tion 4.4 describes some positive aspects of scanning a municipality a 
second time. Lastly, Section 4.5 concludes the generation of a statistical 
data set from this method. 

4.1. Undetectable solar energy systems 

Following the scanning of the municipalities, and then manually 
crosschecking with the local DSO, it was concluded that some PV sys
tems were not detected. Some of these PV systems can be sorted into two 
categories that we in this study regard as undetectable by remote sensing 
aerial imagery methods. These two categories are building integrated PV 
(BIPV) and vertically installed PV modules. BIPV cells/modules are 
designed to blend into the built environment and the buildings they are 
installed on. That characteristic makes it very hard or impossible to 
identify that it is PV from long distances, especially from an aerial 
image, as Fig. 8 illustrates. Likewise, vertically installed PV modules 
cannot be detected in an image that is taken from above. These two types 
of systems could only be identified through the cross-checking with the 
DSÓs databases and onsite inspections. Missing BIPV and vertical sys
tems is an obvious drawback of the approach of statistic generation 
through classification through aerial images. However, through the 
cross-check with the local DSÓs and physical inspections in the munic
ipalities of Falun and Knivsta, only 10 BIPV systems, 5 vertical grid 
connected PV systems, and 2 vertical ST systems were identified, which 
means that the number of BIPV and vertical SEŚs were few compared to 
regular building applied (BAPV) roof mounted SEŚs in these two mu
nicipalities. The identified BIPV and vertical PV systems were added to 
the SES polygon layers of the different municipalities and the generated 
data base of SESs, but were omitted for the generation of additional 
training data and considered as negative image tiles in evaluations of the 
CNN classification algorithm presented in the next section. 

Fig. 8. Example of BIPV systems considered as undetectable by a remote sensing aerial imagery method. (A) A PV roof tile system from Rustabo AB and (B) the 
orthophoto © from the Swedish Land Survey of the same building. (C) A CIGS thin film seam metal roof from Midsummer AB and (D) the orthophoto © from the 
Swedish Land Survey of the same building. 
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4.2. Undetected solar energy systems 

The PV systems that were not detected by the CNN classification 
algorithm were investigated closer, based on the detected system defini
tion, to see if those had some common characteristics. Firstly, they were 
divided into three types of module characteristics; (1) Small modules — 
modules that in the orthophoto appeared to be significantly smaller than 
normal-sized modules (in almost all cases these were used in stationary 
off-grid systems), (2) Frameless modules — modules that do not have a 
characteristic frame, and (3) Framed modules — modules with a 
distinctive frame, traditionally made of aluminum. 

Secondly, we classified the colour of the roof into six general tradi
tional roof colours, and a seventh category if it was ground mounted. 
These were; (1) Full roof — which is when the PV modules completely 
cover a full geometric part of the roof so that the material beneath are 
not visible, (2) Black — black coloured roofs, (3) Concrete — a brownish 
grey colour that is typical for concrete tiles, (4) Grey — different shades 
of grey, which includes roofs which appear to be made of steel or 
aluminum roof sheets, (5) Terracotta — the colour of traditional brick 
pans, (6) White — white or very light grey appearing roofs, and (7) 
Ground — for ground mounted PV systems. 

In addition, four other common aggravating characteristics for the 
undetected PV systems were identified in the analysis, which were; (1) 
Shaded — the whole, or a part, of the PV system was shaded by sur
rounding trees, buildings or part of the same building it was installed on, 
(2) Covered by tree canopy — whole, or a part, of the PV system is covered 
by a tree canopy in the orthophoto, (3) High tilt — modules that have 
been installed with a high tilt, usually >45◦, which makes them appear 
with different (often skewed) dimensions in the orthophotos, as 
compared to systems installed with a lower tilt, and (4) Reflection — 
modules that appear bright white due to the angle between the sun, their 
orientation and the camera, causing a strong reflection when the aerial 
image is taken. 

All undetected PV systems were classified with one of the three 
module characteristics and one of the seven roofs (and ground) ap
pearances, along with the aggravating characteristics if present. Quali
tatively, we present examples of different undetected PV systems 
according to this classification in Appendix B. Quantitatively, the result 
of this classification exercise is presented in Fig. 9. 

The general conclusion from Fig. 9 is that small modules, regardless 
of the colour of the roof, give rise to a number of undetected PV systems. 
Furthermore, frameless modules, together with either a black or full roof 

Fig. 9. Summary of the underlying factors that are 
common for undetected PV systems. The size of the 
circle diagrams represents the number of undetected 
PV systems in each municipality. Each pie piece of the 
inner circle charts represents a certain number of PV 
systems that share the module characteristics. These 
systems are also in the graph geometrically connected 
to the roof colour characteristics in the middle circle 
and some common aggravating characteristics in the 
outer circle. As an example, the red dashed pie piece 
represents five undetected PV systems made up of 
frameless modules, installed on a black roof and that 
was shaded in the aerial image used to create the 
orthophoto.   

Table 1 
Accuracy evaluation of the different municipality scans based on the stated training datasets and performed in the workflow order illustrated by Fig. 4, which mean 
from left column to right column in the table.   

Technology Uppvidinge 
2020 

Falun 2020 Knivsta 2019 Knivsta 2021 

Training dataset Base Base Base 
Upp.0.5m 

Base 
Upp.2.5m 

Base 
Upp.5.0m 

Base 
Upp.7.5m 

Base Base 
Upp.5.0m 
Fal.5.0m 

Base Base 
Upp.5.0m 
Fal.5.0m 
Kni.5.0m 

Total # image tiles - 3 645 323 6 767 141 6 767 141 6 767 141 6 767 141 6 767 141 877 142 877 142  877 142 877 142 

# Borderline - 31 108 108 108 108 108 32 32 56 56 
# True Positive Both 267 944 931 936 934 940 353 359 601 625 

PV 248 677 675 667 674 672 305 301 558 569 
ST 19 281 270 283 274 282 51 61 46 60 

# False Positive - 562 1 582 1 268 1 501 877 862 647 474  601 353 

# True Negative - 3 644 353 6 764 126 6 764 440 6 764 207 6 764 831 6 764 846 876 003 876 176 875 706 875 954 
# False Negative Both 110 381 394 389 391 385 107 101 178 154 

PV 93 222 224 232 225 227 67 71 138 127 
ST 17 161 172 159 168 160 40 30 41 27 

Precision Both 32.2% 37.4% 42.3% 38.4% 51.6% 52.2% 35.3% 43.1% 50.0% 63.9% 
Recall Both 70.8% 71.2% 70.3% 70.6% 70.5% 70.9% 76.7% 78.0% 77.2% 80.2% 

PV 72.7% 75.3% 75.1% 74.2% 75.0% 74.7% 82.0% 80.9% 80.2% 81.8% 
ST 52.8% 63.6% 61.1% 64.0% 62.0% 63.8% 56.0% 67.0% 52.9% 69.0% 

F1 Both 44.3% 49.0% 52.8% 49.8% 59.6% 60.1% 48.4% 55.5% 60.7% 71.1%  
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setup give rise to a majority of the undetected PV systems. In addition, 
frameless modules on roofs with a distinctly different roof colour, such as 
concrete, grey, terracotta or white, usually are combined with one of the 
four aggravating characteristics if they are undetected, most commonly 
when they are shaded. Lastly, for the framed modules, which logically 
should be the easiest for the CNN classification algorithm to detect due 
to the distinctive frame, which sets each module apart from its neigh
bour module and the roof, the shaded, high tilt or reflection characteristics 
are present in almost all cases of undetected systems. 

In addition to the appearance of the systems summarized in Fig. 9, it 
was also noted that smaller PV systems are slightly overrepresented as 
undetected, which are in line with the problems arising from low solar 
panel proportion distribution [40]. Of systems with an area corre
sponding to >50 m2 in the orthophotos, only 4% were undetected in 
Uppvidinge, 4% in Falun, 5% in the 2019 Knivsta scan and 2% in the 
2021 Knivsta scan, which can be compared to the overall undetection 
rate of 11% in Uppvidinge, 12% in Falun, 6% in the 2019 Knivsta scan 
and 5% in the 2021 Knivsta scan. 

For the undetected ST systems, no analysis was conducted as a clear 
trend of an improved detection rate can be read from the Tables 1 and 3, 
as a consequence of added training data over ST systems after each 
municipality scan, and we therefore believe that the major reason for 
undetected ST systems still is a lack of training images for ST systems. 

4.3. Evaluation of the CNN classification algorithm 

Each municipality scan was analysed based on the parameters 
described in Section 3.5, and the results are presented in Table 1. As 
described in Section 3.4, our created solar energy polygon layer contains 
information on whether a polygon object is a PV or ST system. This al
lows for splitting up the number of TP image tiles and FN image tiles into 
the two technologies PV or ST. It should be noted that the sum of the 
number of TPs for PV and ST, respectively, in Table 1, does not add up to 
the stated number of total TP image tiles for both technologies for Falun 
and Knivsta. The reason is that, for these municipalities, there were 14, 3 
and 4 image tiles, respectively, that overlapped with both a PV and a ST 
polygon and thus included as TP for both PV and ST in Table 1. The same 
goes for FN in Falun, where two image tiles that overlap with both a PV 
and a ST polygon were not found in any of the four different scans. 

The four scans on the Falun municipality, based on the base set plus 
each of the training setups from Uppvidinge, see Section 3.6, were 
evaluated against the created ground truth of Falun by calculating the 
precision, the recall and the F1 value. The results are shown in Table 1, 
and as can be seen the number of FP image tiles dropped significantly 
between the scan where the CNN classification algorithm had been 

trained with the base set plus Upp.2.5m, and the scan based on the base set 
plus Upp.5.0m, while there was only marginal changes in the number of 
TP image tiles. Hence, an improvement in precision from 38.4% to 
51.6%, while negligible influence on recall, was achieved when the 
minimum limit of 5.0 m2 was implemented for the generation of addi
tional training data as compared to the limit of 2.5 m2. The number of FP 
image tiles deceased only slightly when the minimum threshold was set 
to 7.5 m2. The result is logical, as the number of additional training 
image tiles decreased when the minimum threshold is increased (e.g., 
from 377 to 341 positive images between the Upp.2.5m and Upp.5.0m), 
while a too low threshold led to that unsuitable image tiles were 
included in the training. We therefore used a setup for the scans of 
Knivsta municipality where positive training samples are generated 
from earlier municipality scans if an image tile contains an entire solar 
energy polygon object of at least 0.5 m2, or if a tile overlaps with at least 
5.0 m2 of parts of one or several solar energy polygon objects, as this 
seems to lead to good results while still generating a larger number of 
training images as compared to if the 7.5 m2 threshold is used. The used 
additional training data added after each municipality scan are 
accordingly denoted Upp.5.0m, Fal.5.0m, and Kni.5.0m, respectively. 

As both the number of TP and FP image tiles can be assigned to either 
of the two technologies, the recall for each technology can be calculated. 
As can be seen in Table 1, the recall for PV is higher than the recall for ST 
in all scans. This is an expected result, as there was no efficient way of 
generating training data over ST systems beforehand, which lead to that 
the base set do not contain any image tiles of ST systems. But after each 
municipality scan, the recall for ST increases significantly, which is 
attributed to training images tiles over ST systems being added in the 
generated additional training sets after each municipality scan. 

The precision accuracy evaluation can, on the contrary, not be 
calculated for the two individual technologies separately, since FP image 
tiles cannot be attributed to either the ST or PV technology, and 
consequently the F1 value can only be calculated for both technologies 
together. 

In general, it is concluded that the approach of extracting additional 
training data after each municipality scan and re-training the CNN al
gorithm with the images (some of which it previously got wrong) suc
cessively improves the accuracy, as compared to the scans where only 
the base set have been used for the training. As Table 1 illustrates, the 
absolute change in precision were an increase of 13.9 percentage points, 
while the recall for both technologies and the F1 score was improved by 
3.1 percentage points and 10.5 percentage points, respectively, in the 
last scan of Knivsta. 

Even if the focus on this paper is the practical process of generating 
statistics, it is of interest to compare the accuracy of this study with 

Table 2 
Accuracy comparison of studies that include detection of decentralised PV systems in the built environment, along with information on image resolution and the data 
sets evaluated.  

Study Model Country Precision 
[%] 

Recall 
[%] 

F1 [%] Image resolution [m/ 
pixel] 

Number of images 
evaluated 

Share of positive samples of the 
images [%] 

[18] ConvNet US (1) 81.2 / 85.5 84.0 / 
87.3 

82.6 / 
86.4 

0.30 - - 

[19] SolarMapper US 0.76 0.77 0.76 0.30 - - 
[15] DeepSolar US (3) 93.1 / 93.7 88.5 / 

90.5 
90.7 / 
92.1 

0.15 93 500 1.31 

[29] DeepSolar US 91.0 98.1 94.4 0.05 3 798 4.08 
[10] TernausNet the 

Netherlands 
93.1 90.7 91.9 0.10 2 791 904 (3) 5.61 

[21,22] DeepSolar Germany 87.3 87.5 87.4 0.10 45 060 0.85 
This 

study 
DeepSolar — 
CNN 

Germany 93.4 81.3 86.9 0.10 45 060 0.85 

This 
study 

DeepSolar — 
CNN 

Sweden 63.9 81.8 71.1 0.16 877 142 0.09  

(1) In Boston respective San Francisco 
(3) In residential respective non-residential areas 
(3) Number of buildings and not images 
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previous studies. Some of the previous studies have focused on detecting 
large PV parks, like [16,17,25,30,31], which is a different matter 
compared to small decentralized PV systems. However, the studies 
based on the DeepSolar project [15,21,22,29], along with [10,18,19] all 
focus on decentralized PV in the built environment. The accuracies 
achieved in these studies are presented in Table 2, along with our result 
for the last scan in this study (Knivsta 2021) in bold. In addition, we ran 
the CNN algorithm, trained the same way as in the last municipality scan 
(Base set + Upp.5.0m + Fal.5.0m + Kni.5.0m), on the OpenNRW_Test_16 
test set of [29] for comparison, and the results are presented in the 
second last row in italic in Table 2. Even if the distribution shift [14,20] 
caused by differences in geography and type of images should be kept in 
mind, it is worth noting that the addition of the training data from 
Sweden seems to have improved precision as compared to the results of 
[21,22]. 

As a remark, it can be perceived that the second scan of Knivsta is 
biased, as we have generated positive training image tiles over 209 
(those systems that existed in July 2019) of the total 348 SESs that CNN 
classification algorithm is intended to locate. However, as the aerial 
images of 2021, as compared to those of 2019, are taken at different time 
of the year (July vs. April), time of the day and different solar intensity, 
several aspects of the images of the same objects differ between the two 
scans. For example, this includes how the shadows fall, perceived col
ours of both SESs and buildings, leafing of threes and moving of non- 
stationary objects or changes of buildings. Due to these changes in the 
imagery, which are traditional aspects in distribution shifts (or domain 
gaps) that give rise to worse performance when applying a classification 
algorithm to a new location [14,19,20], and where especially lighting 
conditions results in heterogeneous colour features [40], we claim that 
an eventual bias is negligible. 

Regarding the three object-wise metrics, the results are listed in 
Table 3. Just as for precision and recall, the share of detected polygon, 
detected system and detected property are for every scan higher for PV than 
for ST, which is due to the same reasons as discussed previously. How
ever, the share of found ST systems is increasing steadily when the CNN 
classification algorithm is gradually trained with progressively more 
image tiles showing ST systems. In the end, 95% respective 80% of all 
detectable PV respective ST systems where found in the 2021 scan of 

Knivsta. This is for at least the PV systems a high enough number for the 
method to be used to generate databases for statistical purposes. It 
should be noted, that these numbers do not include ‘undetectable’ BIPV 
and vertical PV systems, that to our knowledge were two of each in 
Knivsta. 

4.4. Second scan of Knivsta 

For the first scan of Knivsta, orthophotos from 2019 were used, and 
the aerial images had been taken at either 2019-07-19 or 2019-07-20. 
For the second model run of Knivsta, the aerial images taken in 2021, 
at either 2021-06-18, 2021-06-21, or 2021-08-28, were explored. This 
allows studying the changes in the fleet of SESs between mid-2019 and 
mid-2021. As expected, the number of PV systems increased signifi
cantly (see Table 3), following the national trend (see Fig. 2) and con
firms that identifying SES in aerial images by deep machine learning is a 
tool that can be used to analyse PV adoption trajectories [23] and track 
the market development with a high spatial resolution. 

One special case of the additional deployment is the property shown 
in Fig. 5a, that added another set of modules, which can be seen in 
Fig. 10a. This type of expansion of capacity within a property is some
thing that the DSO is not always aware of in Sweden, as reporting to the 
DSO only is mandatory when a property first adds the capacity to pro
duce electricity or when the fuse of the property is changed. We noted 2 
such expansions of PV systems in Knivsta between the two aerial image 
scans performed in this study. In addition, in the comparison with the 
local DSO database, we found 2 earlier presumable PV system capacity 
expansions in Knivsta and 1 in Falun, that seem to have taken place 
before the aerial images were taken. 

Additionally, the second scan of Knivsta allowed for identification of 
SESs that were decommissioned between the two setups of aerial im
ages. Comparing the ground truth results of the second scan of Knivsta 
with the first scan revealed that 2 ST systems had been dismantled 
during the period. 

We also observed that 7 of the 8 PV systems, and 8 of the 15 ST 
systems, that were not detected by the CNN classification algorithm in 
the first scan of Knivsta were correctly classified in the second scan. This 
can probably partly be explained by the adding of training data from the 

Table 3 
Accuracy evaluation by the object-wise metrics found polygon, found system and found property compared to the ground truth of the different municipality scans 
based on the stated training datasets and performed in the workflow order illustrated by Fig. 4, which mean from left column to right column in the table.   

Uppvidinge 2020 Falun 2020 Knivsta 2019 Knivsta 2021 
Technology PV ST PV ST PV ST PV ST 

Polygon Ground truth 238 30 849 373 282 77 562 77 
Found 216 18 756 271 271 60 533 62 
Share 91% 60% 89% 73% 96% 78% 95% 81% 

System Ground truth 128 27 375 313 142 67 282 66 
Found 114 16 328 231 134 52 268 53 
Share 89% 59% 87% 74% 94% 78% 95% 80% 

Property Ground truth 116 26 329 312 124 65 240 64 
Found 105 16 285 231 120 51 230 52 
Share 91% 62% 87% 74% 97% 78% 96% 81%  

Fig. 10. Orthophotos © from the Swedish Land Survey over PV 
systems in Knivsta. (A) Same property as in Fig. 5a, where an 
additional set of PV modules have been installed on the 
northern part of the roof. (B) Building with a PV system which 
was not identified by the CNN classification algorithm in the 
scan of the orthophoto from 2019. (C) The same building and 
PV system as in (B), but in the orthophoto from 2021, which 
was correctly classified as a PV system by the CNN classifica
tion algorithm in the second scan.   
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Table 4 
Statistical summary of the building and property purposes based on the detected property metric of the PV systems in the ground truth dataset for the three scanned 
municipalities.  

General 
building 
purpose

Detailed building purpose Property purpose Number of systems

Uppvid

-inge

2020

Falun

2020

Knivsta

2019

Knivsta

2021

Ground -
Single-family dwelling units 2

Agriculture units 2 1 1

Residential

Small house, detached 

Single-family dwelling units 27 199 74 159

Tenement building units 1

Agriculture units 6 11

Industrial premises units 1

Special units 1

Small house, chain linked 

house
Single-family dwelling units

18 4 7

Single family houses, terraced 

houses

Single-family dwelling units 2 1 3

Tenement building units 1 1

Small house with several 

apartments
Tenement building units 

1

Multi-family house

Tenement building units 3 12 3 3

Single-family dwelling units 1

Special units 1 1

Unspecified 
Single-family dwelling units 3

Agriculture units 1 1

Complementary Unspecified

Single-family dwelling units 20 41 13 22

Tenement building units 1 2

Agriculture units 31 47 18 25

Industrial premises units 2 2

Power-generation units 1

Special units 3 1

Agricultural Unspecified
Single-family dwelling units 2 1

Agriculture units 3 3

Industrial

Wood industry Industrial premises units 1

Other manufacturing industry Tenement building units 1 1 1

Other industrial building Industrial premises units 1

Unspecified
Industrial premises units 1 1 1 1

Single-family dwelling units 1

Public

School Special units 5 3 4

Higher education institution Industrial premises units 1

Hospital Special units 2

Healthcare centre Tenement building units 1

Fire station Special units 1

Town hall Special units 1

Cultural building Special units 1

Associations Tenement building units 1

Sports hall Special units 1 1

Ice rink
Industrial premises units 1

Special units 1

Public baths Special units 1

Riding stables
Agriculture units 1 1

Special units 1

Unspecified
Special units 2 1 1

Tenement building units 1 1

Activity Unspecified

Single-family dwelling units 1

Tenement building units 2 1

Industrial premises units 2 5 1 2

Special units 1

Other building Unspecified

Single-family dwelling units 1

Tenement building units 1 1

Agriculture units 1 1

Total 116 370 125 243
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first scan, which includes image tiles of these missing system, and partly 
by changed conditions in the orthophotos due to the difference in time 
stamps. Fig. 10 b and c illustrates an example of the later, where a PV 
system was in a complete shadow in the orthophoto from 2019-07-19 
(foliated trees at time of aerial image), which led to it not being 
correctly classified by the CNN classification algorithm, but well visible 
in the orthophoto from the aerial image taken 2021-04-16 (due to 
defoliated trees at the time of this aerial image), and by that correctly 
identified. 

To summarize, continuous scans of a municipality on regular basis 
will disclose changes in the fleet of SESs, both newly installed systems 
and dismantled systems, as well as the chance of revealing previously 
unidentified system. 

4.5. Statistical generation 

So far, evaluations of the accuracy of the CNN classification 

algorithm and the results in terms of practically building a database of 
decentralised SESs have been addressed. Lastly, this section summarizes 
what type of statistics that is possible to extract with this method. First, 
the obvious conclusion is that the spatial resolution of this method is 
very high. SESs can be allocated with an exact coordinate and an area 
spread seen from above. This allows to assign them to specific buildings 
(or the location on the ground). This is a higher resolution than what 
most of the Swedish DSOs have, as they are only notified that there exists 
a PV system with a certain capacity behind a certain grid point, which is 
usually equivalent to that they know that a PV system exists within a 
certain property. For the ST technology, only aggregated sales statistics 

Table 5 
Statistical summary of the building and property purposes based on the detected property metric of the ST systems in the ground truth dataset for the three scanned 
municipalities.  

General 
building 
purpose

Detailed building purpose Property purpose Number of systems

Uppvid

-inge

2020

Falun

2020

Knivsta

2019

Knivsta

2021

Ground
- Single-family dwelling units 2 2

- Agriculture units 1

Residential

Small house, detached 

Single-family dwelling units 14 196 38 36

Tenement building units 1

Agriculture units 3 36 7 8

Power-generation units 1

Small house, chain linked 

house
Single-family dwelling units

9

Multi-family house Tenement building units 3

Unspecified
Single-family dwelling units 2 2

Agriculture units 2

Complementary
Unspecified

Single-family dwelling units 5 50 11 11

Agriculture units 2 11 5 5

Other industrial building Industrial premises units 1

Public
School Special units 1

Sports hall Special units 1

Activity Unspecified Tenement building units 1

Total 26 312 65 64

Fig. 11. Summary of number of PV respective ST systems in the ground truth of 
the three municipalities. 

Table 6 
The number, general purpose of the property and the definition of type codes for 
property taxation in Sweden.  

The tax 
agency’s type 
code 

Type of taxation 
units 

Prescribed combination of buildings and 
land 

100 series Agriculture units Economy building, arable land, 
pastureland, productive forest land and 
forest impediment. Also detached houses 
and land for detached houses located on 
agricultural property. 

200 series Single-family 
dwelling units 

Detached houses and plots of land for such 
buildings. 

300 series Tenement 
building units 

Tenements apartment buildings and plots 
of land for such buildings. 

400 series Industrial 
premises units 

Industrial buildings, other buildings, land 
for such buildings as well as certain 
waterworks and fishing properties. 

500 series Owner occupied 
flats units 

Condominiums and plot of land for such 
buildings 

600 series Quarries Extension land as well as industrial 
buildings and other buildings on such land. 

700 series Power-generation 
units 

Power plant building, land for power plant 
building and taxation unit whose value 
predominantly consists of the right to 
share- or replacement power. 

800 series Special units Special buildings and plot of land for such 
buildings.  
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Table 7 
Code list for building purposes and detailed purposes of the BY - Polygon layer 
with buildings.  

Code Purpose of 
building 

Detailed purpose Description 

130 Residential Small house, 
detached 

Small house with a dwelling that 
is not connected to another small 
house 

131 Residential Small house, chain 
linked house 

Two or more single family 
houses joined via a garage, 
storeroom or similar. Each home 
is on private property; semi- 
detached houses are also 
classified as chain linked houses. 

132 Residential Single family 
houses, terraced 
houses 

Small houses in a row of at least 
three houses whose dwelling 
parts are directly joined with 
each other and where each 
dwelling is on private property. 

133 Residential Multi-family 
house 

Building with at least three 
dwellings. May sometimes 
contain an office, shop, hotel, 
restaurant or similar. At least 
50% must be residential. 

135 Residential Small house with 
several apartments 

Small house with several 
apartments that are on the same 
property. E.g., two residential 
houses, rental or tenant-owned, 
with at least three apartments. 

199 Residential Unspecified Home with unknown residential 
purposes. Stated only by 
Lantmäteriet when using 
updating methods that cannot 
determine the purpose. 

240 Industrial Other 
manufacturing 
industry 

Building for other industrial 
activities involving 
manufacturing. 

241 Industrial Gas turbine plant Facilities for production of 
electricity using combustion 
gases. 

242 Industrial Industry hotel Building that contains several 
different industries. E.g., 
industrial building. 

243 Industrial Chemical industry Industry for the manufacture or 
processing of chemical products. 
E.g., paint industry, plastics 
industry, pharmaceuticals 
industry. 

244 Industrial Condensing power 
plant 

Facilities for the production of 
electricity from steam; does not 
utilise waste heat. 

245 Industrial Nuclear power 
station 

Facilities for the production of 
electricity from nuclear energy. 

246 Industrial Food industry Industry for the production of 
food, by the processing of 
agricultural products among 
other things. E.g., processed 
meats, canning industry, fruit 
industry. 

247 Industrial Metal or 
machinery 
industry 

Industry for the production and 
processing of metals and 
machinery. E.g., car industry, 
iron works, mechanical industry, 
metal industry, shipbuilding. 

248 Industrial Textile industry Industry that manufactures yarn, 
cloth etc. and prepares these. E. 
g., textile and clothing, weaving. 

249 Industrial Wood industry Industries for processing wood 
raw materials. E.g., wood, pulp 
and paper and furniture 
industries, paper mill, sawmill, 
carpentry. 

250 Industrial Hydro power 
facilities 

Facility that converts potential 
energy of water into electricity. 

251 Industrial Wind turbine Facility for the conversion of 
wind energy into electricity.  

Table 7 (continued ) 

Code Purpose of 
building 

Detailed purpose Description 

252 Industrial Heat plant Facility that delivers district 
heating from boilers that burn 
solid, liquid or gaseous fuels and 
consume electricity. E.g., 
combined heat and power 
facilities or district heating 
facilities. 

253 Industrial Other industrial 
building 

Other building for industrial 
activities (possibly without 
walls) not involving 
manufacturing, e.g., warehouse, 
petrol station, repair workshop. 

299 Industrial Unspecified Industry with unknown purpose. 
301 Public Public baths Building with public bathing 

facilities. E.g., public baths, 
open-air swimming-bath, 
swimming pool, adventure pool. 

302 Public Fire station Building for rescue services. 
303 Public Bus station Large bus stop or travel centre 

with several lines with buildings. 
E.g., travel centre. 

304 Public Distribution 
building 

Building for distribution 
networks for gas, heating, 
electricity or water. E.g., 
transformer station, district 
heating plant, cabinet 
(telecommunications, 
broadband), water tower, grid 
station. 

305 Public Animal hospital Building for stationary care of 
sick animals. 

306 Public Defence building Building used for defence 
purposes or defence 
preparedness. E.g., building 
adjacent to a military 
establishment or military store. 

307 Public Healthcare centre Unit for non-hospital care. E.g., 
healthcare centre, care centre, 
medical care centre, open care 
centre. Not private surgery, 
however. 

308 Public Higher education 
institution 

Post-secondary school classified 
as higher education institution. 

309 Public Ice rink Built-in artificially frozen ice 
facility. E.g., for ice hockey, 
bandy or ice skating. 

310 Public Railway station Station or stop that expedites 
passenger or goods traffic under 
SJ provisions (SJF 611) and the 
national timetable. 

311 Public Town hall The main building for municipal 
management. E.g., government 
offices, town hall, civic centre. 

312 Public Prison Institution for the enforcement 
of custodial sentences, e.g., 
penitentiary institution or 
prison. 

313 Public Cultural building Building used for cultural 
purposes. E.g., theatre, museum 
or local history museum. 

314 Public Police station Building used as a centre for 
police operations. 

315 Public Sewage treatment 
plant 

Building for the treatment of 
wastewater. 

316 Public Riding stables Building with manège for horse 
riding, e.g., riding stables, riding 
school. 

317 Public Associations Building for established 
organised religious association. 
E.g., church, non-conformist 
church, mosque, synagogue, 
temple, monastery, parish 
house, crematorium, chapel or 
burial chapel. 

(continued on next page) 
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on a national level exist in Sweden, so the spatial resolution of this 
methodology far exceeds the current Swedish ST statistics. 

Furthermore, as described in Section 3.4, the possibility to allocate 
the identified SESs to certain buildings and properties makes it possible 
to assign them the general building purpose, the detailed building pur
pose and the property purpose. The results of the taxonomy of all the 
SESs, on the property metric level in the ground truth, are presented in 
Table 4 for PV and in Table 5 for ST. For instance, the largest number of 
both PV and ST systems are found on the building types Residential; Small 
house, detached and Complementary; Unspecified. The purpose of the 
former is straight forward, and these installations belong to the market 
segment usually referred to as “private residential” or as we use to define 
it “Domestic residential houses”. However, the latter building category 
can represent many different types of buildings, as this can both be for 
example garages (Fig. 5b), which naturally should be part of the private 
residential market segment, or barns (Fig. 7), which rather belong to an 
agriculture market segment. However, a clear indication of what type of 
complementary building it is can be received with the additional in
formation about the property purpose from the Swedish Tax Agency. 

As Tables 4 and 5 illustrates, a very high resolution on ‘market seg
ments’ can be achieved, at least in Sweden, by implementing a method 
of identifying SESs by aerial imagery and deep machine learning. The 
resolution is so high in Tables 4 and 5 that it is hard to get an overview. 
Hence, by combining the detailed purpose of buildings and the property 
purpose we group the rows in Tables 4 and 5, by the colour code seen in 
these tables, into six more classical defined market segments that we call 
(1) Domestic residential houses — light green, (2) “Multifamily resi
dential buildings” — dark green, (3) “Agriculture buildings” — yellow, 
(4) “Commercial buildings” — orange, (5) “Industry buildings” — grey, 
and (6) “Public buildings” — blue. The results of this exercise are pre
sented in Fig. 11, which clearly shows that, when it comes to the number 
of SESs, a clear majority are installed within the domestic residential 
houses market segment in these three municipalities. It should be noted 

that several off-grid systems are included in these numbers. Second most 
common are the agriculture market segment and third commercial fa
cilities. This is an interesting observation, as it has not been possible to 
separate these two market segments from each other in the existing 
statistical databases in Sweden until now. Hence, the commercial mar
ket segment in Fig. 2 includes both agriculture and commercial facilities. 
Public facilities and industry facilities stand for only a few PV and ST 
system in each municipality, but each such system is in general much 
larger than the systems for domestic residential houses, so in terms of 
capacity they would stand for larger market shares. 

5. Discussion 

The focus of this paper has not been on improving the CNN algorithm 
or methodology to reach the highest possible accuracy, but rather pro
posing a method to scan large regions with the purpose of setting up 
databases of SESs for inventory and statistical purposes. Currently, our 
process contains two manual steps that should be possible to automate. 
The first is the creation of a polygon to represent the area spread of the 
identified SESs. This step could be advantageously replaced by an 
automatic artificial neural network segmentation model, and within the 
current research project a U-net model, similar to those implemented by 
[10,16,17,28,30] for segmentation is developed and evaluated [41]. 

Secondly, the classification of the solar energy technology, i.e., PV or 
ST, have been executed manually in this study. The main reason for that 
was the lack of training data for the ST technology. We had no efficient 
way to generate training images over ST systems in Sweden. However, 
from the four municipality scans in this study a total of 656 image tiles 
over ST systems are now labelled. If more municipalities are scanned in 
the same manner, the number of labelled ST images will increase, and 
they should eventually amount to enough images for training the model 
to automatically differentiate the two technologies from each other. 

The lower accuracy achieved in this study as compared to some 
previous work, see Table 2, can be explained by several factors. One 
obvious factor is the resolution of the imagery, as high resolution is 
needed to reliably evaluate fine-grain features such as SES panels. 
Table 2 include information about the imagery resolution of the 
different studies for comparison. 

Regarding the lower precision achieved in this study as compared to 
the previous publications, one explanation is that our scans of complete 
municipalities in the sparsely populated Sweden contain a much larger 
share of negative images than the mentioned studies. As Table 2 show, 
the share of positive image tiles is lower, with factors of ~10 to ~500, in 
the municipality scans of this study as compared to the test sets in the 
previous studies. A larger share of negative image tiles will naturally 
generate relatively more FP images as compared to TP images, resulting 
in a worse precision by definition. This explanation is to a large extent 
confirmed as we achieved a precision of 93.4%, as compared to 63.9%, 
when we ran the equally trained CNN algorithm on the Open
NRW_Test_16 test set of [29], which has an almost ×10 higher share of 
positive images. 

Regarding the recall, our number of 81.8% are lower as compared to 
previous studies, but not as far below as the precision. As the main goal 
is to evaluate how useful detection of decentralised of SES’s by aerial 
images and a CNN classification algorithm are for creating as compre
hensive a database as possible, a high recall is more important than a 
high precision, as the recall measures the ratio of actual positive samples 
that can be identified. 

One reason for our slightly lower recall values could be that we have 
a more accurate ground truth than most previous studies. To our un
derstanding, all of the studies in Table 2 Table 1 used manual annota
tions to create the ground truth, and only [21,22] compared their results 
with known PV locations from PV registries (registries with substantial 
errors in them [20,21]). As a notable exemption from the lack of com
parison with an existing database, [21] state that 16 out of the 160 PV 
systems above 30kWp in the German ‘Marktstammdatenregister’ in their 

Table 7 (continued ) 

Code Purpose of 
building 

Detailed purpose Description 

318 Public Hospital Establishment for inpatient care 
and specialised outpatient care. 
E.g., hospital, county hospital, 
regional hospital. 

319 Public School Building for education. E.g., 
preschool, compulsory school, 
upper secondary school, school 
for people, trade, hunting, 
agriculture, nature and culture, 
natural resources, nomads, 
rescue, forestry, engineering, 
healthcare or Sami. 

320 Public Sports hall Indoor sports facility for sports 
such as badminton, curling, 
tennis. 

321 Public University Higher education classified in 
the Higher Education Ordinance. 

322 Public Waterworks Facility where groundwater or 
surface water is purified into 
drinking water. For example, 
water purification facilities. 

324 Public Multi arena Flexible large arena for sports, 
cultural and other types of 
events. 

399 Public Unspecified Public function with unknown 
purpose. 

499 Activity Unspecified Public function with unknown 
purpose. 

599 Agricultural Unspecified Agricultural building with 
unknown purpose. 

699 Complementary Unspecified Complementary building with 
unknown purpose. 

799 Other building Unspecified Other building with unknown 
purpose.  
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investigated area were not detected in the classification step, and that 
they found 21 PV systems that are not listed in the official registry. As a 
comparison, we found in Knivsta and Falun in total 5 PV grid-connected 
PV systems that were either missing or not correctly registered in the 
DSO database, 47 additional off-grid systems that by definition the DSO 
do no records of and 1 grid-connected PV system that had been 
dismantled without reporting to the DSO. 

Consequently, it is likely that some very difficult cases (like frameless 
modules on black roof with for example either a high tilt, shadows or 
reflections) are not correctly annotated as positive in the previous 
studies that we in Table 2 compare our results with. Subsequently, the 
typical assumption that the ground truth is infallible is unlikely correct 
in these studies, as the error rate of the annotators is unknowable 
without known locations to compare with [20]. For example, it takes a 
very skilled or lucky person to detect the PV system in Fig. 10b or for 
some of the examples in Appendix B. In [20], they estimate that the 
annotators missed about 3.8% of the visible panels, and 5.0% if also 
non-visible systems were included. As we had two different registers to 
cross-check our result for detecting PV systems against, and also con
ducted on-site inspections in some cases, our ground truth is probably 
more reliable than in any of the previous studies in the field, and 
consequently contain several positive image tiles that it is very difficult 
for a person (or a CNN classification algorithm) to detect. 

A way of improving the process used in this paper, and possibly the 
accuracy, could be to implement a mosaicking with sliding windows 
approach, like [30] did with improved result when the stride value was 
decreased. Mosaicking results in overlapping image tiles, which would 
make it possible to increase the solar panel proportion distribution [40], 
and thereby exclude what we defined as borderline image tiles from the 
analysis without any loss of information or investigated area. However, 
such an approach would increase the computational cost [30], which, 
depending on the used striding value, could limit the practicality to scan 
large regions, like municipalities. 

Another way to improve the accuracy could be to implement pre- 
processing steps, such as only scan images that overlap buildings, or 
post-processing steps, like [10] that deleted all results that covered 
greenhouses. Only evaluating images covering buildings would have 
had a positive effect on the accuracy, as many FP image tiles in the first 
scans covered land features such as symmetrically ploughed fields, 
roads, lakes with waves and power lines. However, such a measure 
would make it impossible to identify the 8 ground-mounted SESs 
detected in the three municipalities, and hence would have resulted in 
lower accuracy in our object-wise metrics. Opposite to the Netherlands, 
which host a lot of greenhouses [10], we found no specific building that 
often led to FP classification. A potential post-processing step that would 
have improved the accuracy in Sweden could instead be to remove FP on 
clearly north-facing roofs. 

Lastly, since the CNN algorithm detected 67% of the ST systems in 
the first municipality scan, even if no image of a ST system (intention
ally) was included in the training, we find it surprising that the visual 
resemblance (see Fig. B.7 in Appendix B) between the two SES tech
nologies, PV and ST, are almost not discussed at all within the research 
field. The exemption is [23], that developed a multi-class CNN classifi
cation model that classify each SES into four subtypes, of which one is ST 
systems. Our results, and the lack of reflection upon the similarity of the 
two technologies in the literature, raises a perhaps uncomfortable, but 
springing question; How many of the perceived identified PV systems in 
previous studies are actually ST systems? This question is perhaps most 
relevant for small-scale decentralized SES classification and segmenta
tion, as ST is usually mounted on roofs [1,42,43], but the ST technology 
can also be built in large scale (and be ground mounted) for district 
heating and industrial applications [44–46], and can consequently be 
confused for PV parks. 

6. Conclusions 

The study encompassed a comprehensive analysis of three Swedish 
municipalities using CNN classification algorithms applied to ortho
photos, with the primary aim of identifying and categorizing PV and ST 
systems for statistical purposes. The iterative process involved multiple 
scans, with the CNN algorithm being retrained after each municipality 
scan, resulting in progressively enhanced accuracy. In the initial scan, 
the algorithm detected 89% of the detectable PV systems (excluding 
BIPV and vertical installations) and 59% of the ST systems. Remarkably, 
by the fourth and final scan, these detection rates improved to 95% for 
PV systems and 80% for ST systems. This accuracy underscores the 
model’s ability as both an inventory tool and a mechanism for con
structing comprehensive databases of existing SESs. Connecting such a 
database, where the exact locations of the SESs are known, to existing 
building and property inventories, facilitates the generation of remark
ably detailed SES market segment statistics. 

The process of SES classification, combined with cross-referencing 
against two distinct PV databases and on-site inspections, yielded a 
precise ground truth. This allowed for meticulous analysis and quanti
fication of the attributes associated with undetected PV systems (false 
negatives), a dimension heretofore largely unexplored in existing liter
ature. Conclusions drawn from this analysis indicated that frameless 
modules, typically installed on darker-coloured roofs, constituted the 
majority of undetected PV systems. Additionally, factors such as shading 
from trees or structures, image reflections, and systems with high tilt 
angles were identified as conditions that impeded the CNN classification 
algorithm’s detection efficacy. 

Notably, a subsequent scan of one municipality, conducted two years 
later demonstrated the dynamic nature of SES detection. The second 
scan revealed that most of the previously missed SESs, comprising 7 out 
of 8 PV systems and 8 out of 15 ST systems, were successfully identified. 
This finding underscored the impact of differing conditions at the time of 
aerial imagery acquisition. Moreover, the second scan illuminated the 
potential for aerial imagery and machine learning not only to track the 
commissioning of new SESs but also to monitor the decommissioning of 
old systems. 

In summation, this research makes a contribution to the scientific 
landscape by addressing the real-world accuracy of CNN-based identi
fication of decentralized PV and ST systems. Through systematic scans of 
three municipalities and the establishment of a precise ground truth, the 
study uncovers factors that impact detection rates, thereby advancing 
the practical application of deep learning and aerial imagery in solar 
energy market assessments. 
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Appendix A 

Orthophoto 

Orthophotos are radiometrically processed aerial photography data, geometrically projected to an orthogonal map projection by using an elevation 
model. In an orthophoto the scale or distance between points are not affected by variations in the terrain, which is the case in an aerial photo with 
central projection. 

The product Orthophoto contains orthogonal projected aerial photos (orthophotos) with different combinations of wavelength bands and reso
lutions. Since 2019, orthophotos with a resolution of 0.1 m/pixel, and 4-channel (Red, green, blue, Infrared), exist for Sweden and it is these 
orthophotos that have been used in this project. The orthophotos are taken at a flight altitude of 3000 meter, and each orthophoto cover 2.5 × 2.5 km 
(15 625 × 15 625 pixels) with approximated horizontal standard errors of 0.2 m. 

Photos taken before leafing do not contain that much IR-information. Therefore, the photos can be more or less suitable for different areas of 
application, depending on the time of photography. Other factors can also give some amount of variation in the photos. Examples of such factors are 
fog, sun angle and conditions on the ground, such as drought, at the time of photography. Especially the sun angle is of importance for this project as 
some PV system look like white/shining in the orthophotos when the angle of the sun and tilt and azimuth of the modules are in such position so that 
direct sunlight is reflected into the camera. 

Depending on where in the aerial photo a building lies, i.e., how far away from a building the flight line is, more or less of the façade can be visible 
on the orthophoto. When a building lies in the middle of an aerial photo, the photo is taken directly above the building and then you only see the roof 
of the building and nothing of the façade. When a building lies far away from the flight line, i.e., near the edge of an aerial photo, you see the building 
obliquely from above, hence you can also see relatively much of the façade. So, depending on where in the aerial photo the building lies, more or less of 
the façade can be visible. 

For this reason, differences may occur between different flight years, due to that the same area has been overflown with different flight lines and 
side coverage, so that on an orthophoto from a specific flight year the façade of a certain building might not be visible at all, while on an orthophoto 
from another flight year relatively much of the façade of the same building is visible. 

The ambition is to photograph approximately 30 % of the country each year; more frequently and with higher resolution in densely built-up areas 
in the south of Sweden and along the coast of Norrland, but less frequently and with lower resolution in the inland of Norrland and in the northern 
mountain ranges. 

Type codes for property taxation 

During the property taxation, which takes place every three or six years, the Swedish Tax Agency determines a three-digit designation type code for 
each property which describes the purpose of the property. The type code is an administrative designation and is not based on any legal requirement 
according to law or other provision. How the properties are to be divided into different types are defined in chapter 4, Section 5 of the Property 
Taxation Act (SFS 1979:1152). In this study, we only use the first number in the three-digit designation type code, and the number, general purpose of 
the property and the definition of those are summarised in Table 6. 

AY — Polygon layer with real properties and joint properties 

The AY layer contains polygons for real properties and joint properties. Polygon creation takes place by municipality and comprehensive polygons 
are created. Quality controls are carried out to provide information on the polygons’ structural quality. The AY polygons contain several types of 
information, and the important ones for this project is (1) County and municipality code and name, (2) District name, e.g., BERGA, and (3) Block and 
unit, e.g., 1:3. By combining the District name and Block and unit, the Property Designation is acquired. The Property Designation is the unique 
designation/name that each individual property has been given in Sweden. 

BY — Polygon layer with buildings 

The BY layer contains building geometries. Most of the buildings are measured by either the roof or façade edge of the building. All Swedish 
municipalities have signed a collaboration agreement with Lantmäteriet on updating buildings and all municipalities have building presentations. In 
addition to the position and the buildings measures the layer contains information about the purpose that a building is used for. These are (1) 
Residential — Building that is predominantly used for permanent or leisure accommodation, (2) Industry — Building that is predominantly used for 
the manufacture of products or processing of raw materials, (3) Public — Building that is predominantly used for citizens’ activities in a public context, 
(4) Commercial — Building that is predominantly used for commercial purposes, (5) Agriculture — Building that is predominantly used for agri
cultural, forestry or comparable industry, (6) Complementary — Building belonging to other buildings with residential, social function, business or 
industrial purposes and (7) Other building — Building whose purpose is not Residential, Industrial, Social, Commercial, Agricultural or 
Complementary. 

Detailed purposes are specified for buildings with the building purposes of Residential, Industrial and Public purpose, see Table 7 for the whole list 
and the codes. When a building has several different building purposes, such as residential and business, the building’s main purpose is stated. 

Appendix B 

Examples of undetected PV systems and ST systems 

Examples of different undetected PV systems according to the three classifications discussed in Section 4.2 are shown in the following Figs. B.1-B.6. 
Firstly, three types of module characteristics; (1) Small modules, (2) Frameless modules, and (3) Framed modules. Secondly, general traditional roof 
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colours (and ground mounted); (1) Full roof — which is when the PV modules completely cover a full geometric part of the roof so that the material 
beneath are not visible, (2) Black, (3) Concrete, (4) Grey, (5) Terracotta, (6) White, and (7) Ground. Thirdly, four common aggravating characteristics 
for undetected PV systems; (1) Shaded, (2) Covered by tree canopy, (3) High tilt, and (4) Reflection.

Fig. B.1. Orthophotos © from the Swedish Land over undetected PV system. (A) and (B), ‘Small modules’ on a ‘Grey’ roof and ‘Hidden by tree canopy’, with and 
without the manual created PV polygon, respectively. (C) and (D), ‘Small modules’ on ‘Ground’ with a ‘Hight tilt’, with and without the manual created PV polygons, 
respectively. 

Fig. B.2. Orthophotos © from the Swedish Land over undetected PV system. (A) and (B), ‘Framed modules’ on a ‘Terracotta’ roof with ‘Reflection’, with and without 
the manual created PV polygon, respectively. (C) and (D), ‘Frameless modules’ on a ‘Terracotta’ roof with ‘Reflection’, with and without the manual created PV 
polygons, respectively. 

Fig. B.3. Orthophotos © from the Swedish Land over undetected PV system. (A) and (B), ‘Framed modules’ on a ‘Grey’ roof with ‘Reflection’, with and without the 
manual created PV polygons, respectively. (C) and (D), ‘Frameless modules’ on a ‘Terracotta’ roof and ‘Hidden by tree canopy’, with and without the manual created 
PV polygon, respectively. 

Fig. B.4. Orthophotos © from the Swedish Land over undetected PV system. (A) and (B), ‘Framed modules’ as a ‘Full roof’, with and without the manual created PV 
polygon, respectively. (C) and (D), ‘Frameless modules’ as a ‘Full roof’, with and without the manual created PV polygon, respectively. 

Fig. B.5. Orthophotos © from the Swedish Land over undetected PV system. (A) and (B), ‘Frameless modules’ on a ‘Terracotta’ roof that is ‘Shaded’, with and 
without the manual created PV polygons, respectively. (C) and (D), ‘Frameless modules’ on a ‘Grey’ roof that is ‘Shaded’, with and without the manual created PV 
polygon, respectively.  
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Fig. B.6. Orthophotos © from the Swedish Land over undetected PV system. (A) and (B), ‘Framed modules’ on a ‘White’ roof with a ‘Hight tilt’, with and without the 
manual created PV polygons, respectively. (C) and (D), ‘Frameless modules’ on a ‘Concrete’ roof with a ‘Hight tilt’, with and without the manual created PV polygons, 
respectively. 

In addition, Fig. B.7 illustrates some different kind of ST systems, that could be mistaken for PV systems by a CNN classification algorithm.

Fig. B.7. Orthophotos © from the Swedish Land over undetected PV system. (A) An evacuated tube absorber ST system, (B) a roof integrated flat plate absorber ST 
system, (C) a roof applied flat plate absorber ST system, and (D), an unglazed absorber ST system. 
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